(—{ — PG

Workload Management and Application Placement for
the Cray Linux Environment™

S-2496-42

© 2010-2013 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software” as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray and Sonexion are federally registered trademarks and Active Manager, Cascade, Cray Apprentice2,

Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC,
Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM,

Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2,
Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XEbm, Cray XE6, Cray XE6m, Cray XK6, Cray XK6m,

Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5,, Cray XT5m, Cray XT6,
Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, LibSci, NodeKARE, RapidArray, The Way to Better
Science, Threadstorm, uRiKA, UNICOS/Ic, and YarcData are trademarks of Cray Inc.

AMD and Opteron are trademarks of Advanced Micro Devices, Inc. Aries, Gemini, SeaStar, and Intel are
trademarks of Intel Corporation or its subsidiaries in the United States and other countries. GNU is a trademark

of The Free Software Foundation. General Parallel File System (GPFS) is atrademark of International Business
Machines Corporation. InfiniBandis a trademark of InfiniBand Trade Association. Linux isatrademark of Linus
Torvalds. Lustreis atrademark of Xyratex or its affiliates. NFS, Sun and Java are trademarks of Oracle and/or its
affiliates. Moab is atrademark of Adaptive Computing Enterprises, Inc. NVIDIA, CUDA, Tesla, and Kepler are
trademarks of NVIDIA Corporation. PBS Professional is a trademark of Altair Grid Technologies. PETScisa
trademark of Copyright (C) 1995-2004 University of Chicago. PGI is atrademark of The Portland Group Compiler
Technology, STMicroelectronics, Inc. Platform and L SF are trademarks of Platform Computing Corporation. SUSE
isatrademark of Novell, Inc. TotalView is atrademark of Rogue Wave Software, Inc. UNIX, the “X device,” X
Window System, and X/Open are trademarks of The Open Group. All other trademarks are the property of their
respective owners.

RECORD OF REVISION
S-2496-42 Published April 2013 Supports the Cray Linux Environment (CLE) 4.2 release.

S-2496-4101 Published December 2012 Supports the Cray Linux Environment (CLE) 4.1.UPO1 general availability
(GA) release.

S-2496-5001 Published November 2012 Supports the Cray Linux Environment (CLE) 5.0.UPO1 limited availability
(LA) release.

S-2496-41 Published August 2012 Supports the Cray Linux Environment (CLE) 4.1.UPQO limited availability
(LA) release.

S-2496-4003 Published March 2012 Supports the Cray Linux Environment (CLE) 4.0.UPO3 release.
S-2496-4002 Published December 2011 Supports the Cray Linux Environment (CLE) 4.0.UPO2 release.
S-2496-4001 Published September 2011 Supports the Cray Linux Environment (CLE) 4.0.UPO1 release.
S$-2496-3103 Published March 2011 Supports the Cray Linux Environment (CLE) 3.1.UPO3 release.

S-2496-3102 Published December 2010 Supports the Cray Linux Environment (CLE) 3.1.UPO2 release.
S-2496-31 Published June 2010 Supports Cray Linux Environment (CLE) 3.1 release.

Changes to this Document

Workload Management and Application Placement for the Cray Linux Environment™ S-2496-42

Revised information:
* Added - e option to apr un command in Chapter 2, Running Applications on page 15.

e Added alimitation to Chapter 7, Using Checkpoint/Restart on page 69. Single rank MPI applications are
not supported with checkpoint/restart.

Ccontents

System Overviews [1]
1.1 Cray System Features

Running Applications [2]

2.1 Using theapr un Command
2.1.1 ALPS Application Environment Variables
2.1.2 Usage Output String

2.2 Understanding Application Placement
2.2.1 System Interconnnect Features Impacting Application Placement
2.2.2 Application Placement Algorithms on Cray Systems

2.3 Gathering Application Status and Information on the Cray System
2.3.1Using thext nodest at Command

2.4 Usingthecnsel ect Command

2.5 Understanding How Much Memory is Available to Applications

2.6 Core Specialization

2.7 Launching an MPMD Application

2.8 Managing Compute Node Processors from an MPI Program

2.9 About apr un Input and Output Modes

2.10 About apr un Resource Limits

2.11 About apr un Signal Processing

2.12 Reserved File Descriptors

Running User Programs on Service Nodes [3]

Using Workload M anagement Systems [4]
4.1 Creating Job Scripts

4.2 Submitting Batch Jobs

4.3 Getting Job Status

4.4 Removing a Job from the Queue

S-2496-42

Page

11
11

15
15
23
24
24
25
26
30
35
36
37
38
38
39
39
39
40
40

4

5 R &6

46

Workload Management and Application Placement for the Cray Linux Environment™

Page

Dynamic Shared Objectsand Libraries (DSLS) [5] 47
5.1 Introduction e e e 47
5.2 About the Compute Node Root Run Time Environment Ce e 47
5.21DSL Supporto 47
53ConfiguringDSLo 48
5.4 Building, Launching, and Workload Management Using Dynamic Objects Ce e 49
541 Linker SearchOrdero 49
5.5 Troubleshooting C e e e e 52
5.5.1 Error While Launching with apr un: "error while loading shared libraries’ e 52
5.5.2 Running an Application Using a Non-existent Root Ce e 52
5.5.3 Performance Implications of Using Dynamic Shared Objects 53
Using Cluster Compatibility Modein CLE [6] 55
6.1 Cluster Compatibility Mode 55
6.1.1 CCM Implementation C e e e 56
6.2 Installation and Configuration of Applications for CCM Ce e 57
6.3 Using CCM e e e e e e 57
6.3.1 CCM Commands C e e 57
6.3.1.1ccnrun C e e 58
6.3.1.2ccm ogi n C e s 58

6.3.2 Starting a CCM Batch Job e e e 59
6.3.3 X11 Forwarding in CCM C e e 60
6.3.4 1SV Application Acceleration (IAA) C e 60
6.3.4.1 Configuring Platform MPI (HP-MPI) and Launching npi r un Ce e 60
6.3.4.2 Caveats and Limitationsfor IAA L. 61
6.3.4.3 Troubleshooting IAA e e 61

6.4 Individual Software Vendor (ISV) Example 63
6.5 Troubleshooting o 64
6.5.1CCM InitidizationFails 64
6.5.2pam j ob. so IsIncompatible with CCM 64
653PMER_COLLECTIVE ERROR« 65
6.5.4 Job Hangs When sa Parameter |'s Passed to Platform MPI Ce e 65
6.5.5"MPI _Init: dl open" Error(s) C e 65
6.5.6 Bus Errors In an Application, MPI, or | i bi bgni Ce e 65
6.5.79l i bc. so Errorsat Start of Application Launch C o 65
6.58"orted: command not found" Ce e 66
6.6 Caveats and Limitations for CCM Ce e e e 66
6.6.1 ALPS Does Not Accurately Reflect CCM Job Resources 66

8 S-2496-42

Contents

6.6.2 Open MPI and Moab and TORQUE Integration Not Supported

6.6.3 Miscellaneous Limitations

Using Checkpoint/Restart [7]

Optimizing Applications [8]

8.1 Using Compiler Optimization Options
8.2 Using apr un Memory Affinity Options
8.3 Using apr un CPU Affinity Options
8.4 Exclusive Access

8.5 Optimizing Process Placement on Multicore Nodes

Example Applications [9]

9.1 Running aBasic Application

9.2 Running an MPI Application

9.3 Using the Cray shnmem put Function

9.4 Using the Cray shnmem get Function

9.5 Running Partitioned Global Address Space (PGAS) Applications
9.5.1 Running a Unified Parallel C (UPC) Application
9.5.2 Running a Fortran 2008 Application Using Coarrays

9.6 Running an Acclerated Cray LibSci Routine

9.7 Running a PETSc Application

9.8 Running an OpenMP Application

9.9 Running an Interactive Batch Job

9.10 Running a Batch Job Script

9.11 Running Multiple Sequential Applications

9.12 Running Multiple Parallel Applications

9.13 Using apr un Memory Affinity Options
9.13.1 Usingtheapr un - S Option
9.13.2Usingtheapr un - sl Option
9.13.3Using theapr un - sn Option
9.13.4 Using theapr un -ss Option

9.14 Using apr un CPU Affinity Options .o
9.14.1Usingtheapr un -cc cpu_list Option
9.14.2 Usingtheapr un -cc keyword Options

9.15 Using Checkpoint/Restart Commands

9.16 Running Compute Node Commands

9.17 Using the High-level PAPI Interface

9.18 Using the Low-level PAPI Interface

S-2496-42

Page

66
67

69

71
71
73
75
75
76

77
77
78
79
81
82
83

84
84
86
95
98
99
100
102
104
104
104
105
105
105
106
106
107
111

111
112

Workload Management and Application Placement for the Cray Linux Environment™

Page

9.19 Using CrayPat e e s e 114
9.20Using Cray Apprentice2o 117
Appendix A Further Information 119
A.1Related Publications L Lo 119

A.1.1 Publications for Application Devel opers Ce e e 119
Procedures
Procedurel. Disabling CSA Accounting for thecnos classview 64
Examples
Examplel. Compilinganapplication 49
Example2. Running an application in interactivemode 51
Example3. Running an application using aworkload management system 51
Example4. Running aprogramusing abatchscript 51
Example5. LaunchingaCCM applicationusing PBSor Moaband TORQUE 59
Example6. LaunchingaCCM application using PlatfoomLSF 59
Example 7. Launching the UMT/pyMPI benchmark using CCM Ce e 63
Tables
Tablel. apr un Versusqsub Versusbsub (LSF) Options Ce e 44
Figures
Figure1l. Cabinet View Showing Three Applicationsin Original Serial Ordering 26
Figure2. Cabinet View Showing Three Applicationsin New Ordering 27
Figure3. Topology View of Origina ApplicationOrdering 27
Figure4. Topology View of New Application Ordering 28
Figure5. SeaStar Interconnect Links L. L. L. ... 29
Figure6. Gemini Interconnect Links 29
Figure 7. Cray Job Distribution Cross Section e e 56
Figure8. CCM JobFlow Diagram 57
Figure9. Cray Apprentice2Callgraph 118

10 S-2496-42

System Overviews [1]

1.1 Cray System Features

S-2496-42

Cray XE and Cray XK supercomputers are massively parallel processing (MPP)
systems. Cray has combined commodity and open source components with
custom-designed hardware and software to create a system that can operate efficiently
at an immense scale.

Cray systems are based on the Red Storm technology that was developed jointly
by Cray Inc. and the U.S. Department of Energy Sandia National Laboratories.
Cray systems are designed to run applications that require large-scale processing,
high network bandwidth, and complex communications. Typical applications
are those that create detailed simulations in both time and space, with complex
geometries that involve many different material components. These long-running,
resource-intensive applications require a system that is programmable, scalable,
reliable, and manageable.

The Cray XE series consists of Cray XE5 and Cray XE6 systems. The Cray XK
series consists of Cray XK6 systems. Both systems use the Gemini™ high speed
system interconnect. Cray XK6 systems are hybrid supercomputers where each
node has both an AMD Opteron 6200 series CPU and an NVIDIA GPGPU (General
Purpose Graphics Processing Unit) that serves as a highly-threaded coprocessor
especially suited for datasets in the SIMD computational domain.

The major features of Cray systems are performance, scalability and resiliency:

» Cray systems are designed to scale to more than 1 million ranks. The ability
to scale to such proportions stems from the design of system components and
software:

— The basic component isthe node. There are two types of nodes. Service nodes
provide support functions, such as managing the user's environment, handling
I/0, and booting the system. Compute nodes run user applications. Because
processors are inserted into standard sockets, customers can upgrade nodes as
faster processors become available. Compute nodes consist of subsets called
non-uniform memory access (NUMA) nodes, whose boundaries are defined
by processor dies. Each NUMA node consists of a set of execution cores and
memory. Inter-NUMA node operations within the same compute node will
be slower than intraaNUMA node operations—this is the "non-uniformity" of
memory access within and between NUMA nodes.

11

Workload Management and Application Placement for the Cray Linux Environment™

12

On the Cray XE6 compute blade, consisting of AMD Opteron 6100 and 6200
Series Processors, there are two die per package. Thus, there are four NUMA
nodes per compute node. On the Cray XK6 compute blade thereis one AMD
Opteron 6200 processor, therefore there are two NUMA nodes per compute
node.

Cray systems use a simple memory model. Every instance of a distributed
application has its own processors and local memory. Remote memory is
the memory on other nodes that run the associated application instances.
However, Cray systems support one-sided programming models such as
Chapel and PGAS (Parallel Global Addess Space) languages that allow
programs to treat application memory spaces as distributed global memories.

The system interconnection network links compute and service nodes.

This is the data-routing resource that Cray systems use to maintain high
communication rates as the number of nodes increases. Cray systems use a
full 3D torus network topology. However, Cray XE5m and Cray XE6m use
atwo-dimensional topology.

Cray system resiliency features:

The Node Health Checker (NHC) performs tests to determine if compute
nodes that are allocated to an application are healthy enough to support
running subsequent applications. If not, NHC removes any nodes incapable
of running an application from the resource pool.

Tools that assist administrators to recover from system or node failures,
including a hot backup utility, boot node failover, single or multiple compute
node reboots, and warm boots.

Error correction code (ECC) technology, which detects multiple-bit data
storage and transfer errors and corrects most single and some multiple-bit
errors.

Lustre file system failover. When administrators enable Lustre automatic
failover, Lustre services switch to standby servicesif the primary node fails or
Lustre services are temporarily shut down for maintenance.

System processor boards (called blades) have redundant voltage regul ator
modules (VRMs or verties) or VRMs with redundant circuitry.

Multiple redundant RAID controllers, that provide automatic failover
capability and multiple Fibre Channel and InfiniBand connections to disk
storage.

The ability to warm swap system blades.
Network link failure detection and automatic rerouting.

Application relaunch and reconnect.

S-2496-42

System Overviews [1]

S-2496-42

The major software components of Cray systems are:

* Application development tools, comprising:

Cray Application Development Environment (CADE):

» Message Passing Toolkit (MPI, SHMEM)

e Math and science libraries (LibSci, PETSc, ACML, FFTW)
« Datamodeling and management tools (NetCDF, HDF5)

e GNU debugger (Igdb)

e GCC C, C++, and Fortran compilers

» Java (for developing service node programs)

e Application placement tools:

Application Level Placement Scheduler (ALPS) application launch and
schedule utility.

Cluster Compatibility Mode allows users to run cluster-based individual
software vendor applications on Cray systems.

Checkpoint/restart.

e Optional products:

C, C++, and Fortran 95 compilers from PGl and PathScale
glibc library (the compute node subset)
Chapel

Workload management Systems (PBS Professional, Moab and TORQUE,
Platform LSF)

TotalView debugger

DDT debugger

Cray Performance Measurement and Analysis Tools
Intel Compiler Support

Cray Compiling Environment (CCE)

e Cray C and compilers

e Cray C++ compiler

» Fortran 2003 compiler

13

Workload Management and Application Placement for the Cray Linux Environment™

e The Cray C compiler supports Unified Parallel C and the Cray Fortran
compiler supports co-arrays and several other Fortran 2008 features. All
CCE compilers support OpenMP.

« The CUDA toolkit

e Cray Application Development Supplement (CADES) for stand alone Linux
application development platforms

* Operating system services. The operating system, Cray Linux Environment
(CLE), is tailored to the requirements of service and compute nodes. A
full-featured SUSE Linux operating system runs on service nodes, and a
lightweight kernel, CNL, runs on compute nodes. With the compute node root
runtime environment compute nodes have a chrooted, read-only view of the
shared root file system to alow library linking and other such Linux services that
are not included in the compute node kernel.

» Pardlel filesystems support. Cray supports the Lustre parallel filesystem. CLE
also enables the Cray system to use file systems such as NFS by projecting them
to compute nodes using Cray Data Virtualization Services (DVS).

e System management and administration tools:

— System Management Workstation (SMW), the single point of control for
system administration.

— Hardware Supervisory System (HSS), which monitors the system and handles
component failures. HSS isindependent of computation and service hardware
components and has its own network.

— Comprehensive System Accounting (CSA), a software package that performs
standard system accounting processing. CSA is open-source software that
includes changes to the Linux kernel so that the CSA can collect more types
of system resource usage data than under standard Fourth Berkeley Software
Distribution (BSD) process accounting.

An additional CSA interface enables the project database to use
customer-supplied user, account, and project information that reside on a
separate Lightweight Directory Access Protocol (LDAP) server.

14 S-2496-42

Running Applications [2]

The apr un utility launches applications on compute nodes. The utility submits
applicationsto the Application Level Placement Scheduler (ALPS) for placement and
execution, forwards your login node environment to the assigned compute nodes,
forwards signals, and managesthe st di n, st dout , and st der r streams.

This chapter describes how to run applications interactively on compute nodes and
get application status reports. For a description of batch job processing, see Chapter
4, Using Workload Management Systems on page 43.

2.1 Using the apr un Command

S-2496-42

Use the apr un command to specify the resources your application requires, request
application placement, and initiate application launch.

The format of the apr un command is:

aprun [-a arch] [-b] [-B] [-C]

[-cc cpu_list] keyword] [-cp cpu placement file name] [-d depth] [- D value]
[-e eV] [-L nodelist] [-| node list_file [-Msizefh|hs]] [-] num cpus]
[-n pes] [-N pes per_node] [-F accessmode] [- p protectiondomainidentifier]

[-q] [-r #CPUg [-R pedeq [-S pes per_numa_node]
[-sl list_of numa nodes] [-sn numa_nodes per_node] [-SS] [-T]
[-t sec] executable [arguments for_executable]

where;

-b Bypasses the transfer of the executable program to the compute
nodes. By default, the executable is transferred to the compute nodes
during the apr un process of launching an application. For an
example, see Running Compute Node Commands on page 111.

-B Reuses the width, depth, nppn, and memory request options that are
specified with the batch reservation. This option obviates the need to
specify apr un options- n, - d, - N, and - m apr un will exit with
errors if these options are specified with the - B option.

-C Attempts to reconnect the application-control fan-out tree around
failed nodes and complete application execution. To use this option,
your application must use a programming model that supports
reconnect. Options - Cand - R are mutually exclusive.

15

Workload Management and Application Placement for the Cray Linux Environment™

16

-cc cpu_list] keyword

Binds processing elements (PES) to CPUs. CNL does not migrate
processes that are bound to a CPU. This option applies to all
multicore compute nodes. The cpu_list is not used for placement
decisions, but is used only by CNL during application execution. For
further information about binding (CPU affinity), see Using apr un
CPU Affinity Options on page 75.

The cpu_list is acomma-separated or hyphen-separated list of logical
CPU numbers and/or ranges. As PEs are created, they are bound to
the CPU in cpu_list corresponding to the number of PEs that have
been created at that point. For example, the first PE created is bound
to the first CPU in cpu_list, the second PE created is bound to the
second CPU in cpu_list, and so on. If more PEs are created than
givenin cpu_list, binding starts over at the beginning of cpu_list and
starts again with the first CPU in cpu_list. The cpu_list can also
contain an x, which indicates that the application-created process at
that location in the fork sequence should not be bound to a CPU.

If multiple PEs are created on a compute node, the user may
optionaly specify a cpu_list for each PE. Multiple cpu_lists are
separated by colons (:). This provides the user with the ability to
control the placement for PEs that may conflict with other PEs that
are simultaneously creating child processes and threads of their own.

% aprun -n 2 -d 3 -cc 0,1,2:4,5,6 ./a.out

The exampl e above contains two cpu_lists. Thefirst (0,1,2) is applied
to the first PE created and any threads or child processes that result.
The second (4,5,6) is applied to the second PE created and any
threads or child processes that result.

Out-of-range cpu_list values are ignored unless all CPU values are
out of range, in which case an error message is issued. For example,
if you want to bind PEs starting with the highest CPU on a compute
node and work down from there, you might use this- cc option:

% aprun -n 8 -cc 10-4 ./a.out

If the PEs were placed on Cray XE6 24-core compute nodes, the
specified - cc range would be valid. However, if the PEs were placed
on Cray XK6 eight-core compute nodes, CPUs 10-8 would be out

of range and therefore not used.

The following keyword values can be used:

* Thecpu keyword (the default) binds each PE to a CPU within
the assigned NUMA node. You do not have to indicate a specific
CPU.

S-2496-42

Running Applications [2]

S-2496-42

If you specify adepth per PE (aprun -d depth), the PEsare
constrained to CPUs with a distance of depth between them to
each PE's threads to the CPUs closest to the PE's CPU.

The - cc cpu option is the typical use case for an MPI
application.

Note: If you oversubscribe CPUs for an OpenMP application,
Cray recommends that you not usethe - cc cpu default.
Testthe-cc none and-cc numa_node options and
compare results to determine which option produces the better
performance.

 Thenuna_node keyword constrains PEs to the CPUs within the
assigned NUMA node. CNL can migrate a PE among the CPUs
in the assigned NUMA node but not off the assigned NUMA
node.

If PEs create threads, the threads are constrained to the same
NUMA-node CPUs as the PEs. Thereis one exception. If depth
is greater than the number of CPUs per NUMA node, once the
number of threads created by the PE has exceeded the number of
CPUs per NUMA node, the remaining threads are constrained

to CPUs within the next NUMA node on the compute node.

For example, on 8-core nodes, if depth is 5, threads 0-3 are
constrained to CPUs 0-3 and thread 4 is constrained to CPUs 4-7.

e Thenone keyword allows PE migration within the assigned
NUMA nodes.

-cp cpu_placement_file name

Provides the name of a CPU binding placement file. This option
applies to all multicore compute nodes. This file must be located
on afilesystem that is accessible to the compute nodes. The CPU
placement file provides more extensive CPU binding instructions
than the - cc options.

- p protection domain identifier

Requests use of a protection domain using the user pre-allocated
protection identifier. You cannot use this option with protection
domains already allocated by system services. Any cooperating set of
applications must specify this same apr un - p option to have access
to the shared protection domain. apr un will return an error if either
the protection domain identifier is not recognized or if the user is not
the owner of the specified protection domain identifier.

17

Workload Management and Application Placement for the Cray Linux Environment™

- D value

-d depth

-e ew

-j num_cpus

- L node list

18

The - D option valueis an integer bitmask setting that controls debug
verbosity, where:

e A valueof 1 providesasmall level of debug messages
e A valueof 2 provides amedium level of debug messages
e A valueof 4 provides ahigh level of debug messages

Because this option is a bitmask setting, value can be set to get any
or all of the above levels of debug messages. Therefore, valid values
are 0 through 7. For example, - D 3 provides al small and medium
level debug messages.

Specifiesthe number of CPUs for each PE and its threads. ALPS
alocates the number of CPUs equal to depth times pes. The- cc
cpu_list option can restrict the placement of threads, resulting in
more than one thread per CPU.

The default depthis 1.

For OpenMP applications, use both the OVP_NUM_THREADS
environment variable to specify the number of threads and the

apr un -d option to specify the number of CPUs hosting the
threads. ALPS creates- n pesinstances of the executable, and the
executable spawns OVP_NUM_ THREADS-1 additional threads per
PE. For an OpenMP example, see Running an OpenMP Application
on page 95.

Note: For a PathScale OpenMP program, set the
PSC_OWMP_AFFI NI TY environment variable to FALSE.

For Cray systems, compute nodes must have at least depth CPUs. For
Cray XE5 systems, depth cannot exceed 12. For Cray XK6 compute

blades, depth cannot exceed 16. For Cray XE6 systems, depth cannot
exceed 32.

Sets an environment variable on the compute nodes. The form
of the assignment should be of the form VARNAME=value.. You
can include multiple arguments with multiple, space-separated
flag and assignment pairings, e.g. - € VARNAME1=valuel - e
VARNAME2=value2, etc.

Specifieshow many CPUs to use per compute unit for an ALPS
job. See for an explanation of compute unit affinity in ALPS. For
more information on compute unit affinity, see Using Compute Unit
Affinity on Cray Systems.

Specifiesthe candidate nodes to constrain application placement.

S-2496-42

Running Applications [2]

S-2496-42

- m size[hjhg]

The syntax alows a comma-separated list of nodes (such as

-L 32, 33, 40), arange of nodes (suchas-L 41-87),ora
combination of both formats. Node values can be expressed in
decimal, octal (preceded by 0), or hexadecimal (preceded by 0x).
The first number in a range must be less than the second number
(8- 6, for example, isinvalid), but the nodesin alist can bein any
order.

This option is used for applications launched interactively; use
theqsub -1 nppnodes=\"node list\" option for batch and
interactive batch jobs.

If the placement node list contains fewer nodes than the number
required, afatal error is produced. If resources are not currently
available, apr un continues to retry.

A common source of nodelistsisthecnsel ect command. See the
cnsel ect (1) man page for details.

Specifiesthe per-PE required Resident Set Size (RSS) memory size
in megabytes. K, M, and G suffixes (case insensitive) are supported
(16M = 16m = 16 megabytes, for example). If you do not include the
- moption, the default amount of memory available to each PE equals
(compute node memory size) / (number of PES) calculated for each
compute node.

If you want huge pages (2 MB) allocated for an application, use the
h or hs suffix.

Cray XE and Cray XK: The default huge page size is 2 MB.
Additional sizes are available: 128KB, 512KB, 8MB, 16MB, and
64MB.

The use of the - moption is not required on Cray systems because
the kernel allows the dynamic creation of huge pages. However, it
is advisable to specify this option and preallocate an appropriate
number of huge pages, when memory requirements are known, to
reduce operating system overhead. Seethei nt r o_hugepages(1)
man page.

- m sizeh Requests memory to be allocated to each PE, where
memory is preferentially allocated out of the huge
page pool. All nodes use as much memory as they
are able to alocate and 4 KB base pages thereafter.

19

Workload Management and Application Placement for the Cray Linux Environment™

20

-n pes

-m sizehs Requests memory to be allocated to each PE, where
memory is alocated out of the huge page pool. If
the request cannot be satisfied, an error message is
issued and the application launch is terminated.

Note: To use huge pages, you must first link the application with
huget | bf s:
% cc -c my_hugepages_app.c

% cc -0 ny_hugepages_app ny_hugepages_app. 0
-1 huget | bf s

Set the huge pages environment variable at run-time:

% set env HUGETLB_MORECORE yes

Or

% export HUGETLB_MORECORE=yes

Specifies the number of processing elements (PEs) that your
application requires. A PE is an instance of an ALPS-launched
executable. You can express the number of PEsin decimal, octal, or
hexadecimal form. If peshasaleading O, it isinterpreted as octa
(-n 16 specifies16 PEs, but - n 016 isinterpreted as 14 PES).

If pes has aleading Ox, it isinterpreted as hexadecimal (-n 16
specifies 16 PEs, but - n 0x 16 isinterpreted as 22 PEs). The default
valueis 1.

- N pes _per_node

Specifiesthe number of PEsto place per node. For Cray systems, the
default is the number of available NUMA nodes times the number
of cores per NUMA node.

The maximum pes_per_node is 32 for systems with Cray XE6
compute blades.

-F excl usi ve| share

excl usi ve mode provides a program with exclusive access to
all the processing and memory resources on a node. Using this
option with the cc option binds processes to those mentioned in
the affinity string. shar e mode access restricts the application
specificcpuset contentsto only the application reserved cores
and memory on NUMA node boundaries, meaning the application
will not have access to cores and memory on other NUMA nodes
on that compute node. The excl usi ve option does not need to

S-2496-42

Running Applications [2]

S-2496-42

- cores

-R pe_dec

be specified because exclusive access mode is enabled by default.
However, if nodeShar e issetto sharein/ et ¢/ al ps. conf then
you must usethe- F excl usi ve to override the policy set in this
file. You can check the value of nodeShar e by executing apst at
-SvVv | grep access.

Specifies quiet mode and suppresses al apr un-generated non-fatal
messages. Do not use this option with the - D (debug) option; apr un
terminates the application if both options are specified. Even with
the - g option, apr un writes its help message and any ALPS fatal
messages when exiting. Normally, this option should not be used.

Enables core specialization on Cray compute nodes, where the
number of cores specifiedis the number of system services cores per
node for the application. If ther valueisgreater than one, the system
services core will be assigned in a round-robin fashion to each
NUMA node in descending order unlessthe- cc cpu_list affinity
option is specified. In that case, specialized cores are assigned from
the highest-order core sans those specifiedin cpu_list.

Enables application relaunch so that should the application
experience certain system failures, ALPS will attempt to relaunch
and complete in a degraded manner. pe_dec is the processing
element (PE) decrement tolerance. If pe_dec is hon-zero, apr un
attempts to relaunch with a maximum of pe_dec fewer PEs. If

pe _decisO, apr un will attempt relaunch with the same number of
PEs specified with original launch. Relaunch is supported per apr un
instance. A decrement count value greater than zero will fail for
MPMD launches with more than one element. apr un will attempt
relaunch withec_node_f ai | ed and ec_node_hal t hardware
supervisory system eventsonly. Options - C and - R are mutually
exclusive.

- S pes _per_numa_node

Specifiesthe number of PEs to allocate per NUMA node. You
can use this option to reduce the number of PESs per NUMA node,
thereby making more resources available per PE.

For 8-core compute nodes, the default is 4. For 12-core compute
nodes, the default is 6. For 16-core compute nodes, the default
valueis 4. For 24-core compute nodes, the default is6. For 32-core
compute nodes, the default is8. A zero value is not allowed and
causes a fatal error. For further information, see Using apr un
Memory Affinity Options on page 73.

21

Workload Management and Application Placement for the Cray Linux Environment™

-sl list_of numa_nodes

Specifiesthe NUMA node or nodes (comma separated or hyphen
separated) to use for application placement. A spaceis required
between - sl and list_of numa nodes. Thelist_of numa nodes
value can be- sl <0, 1> on Cray XE5 and Cray XK6 compute
nodes, - sl <0, 1, 2, 3> on Cray XE6 compute nodes, or arange
suchas-sl 0-1and-sl O0-3. Thedefault isno placement
constraints. You can use this option to determine whether restricting
your PEs to one NUMA node per node affects performance.

List NUMA nodesin ascending order; -sl 1-Oand-sl 1,0 are
invalid.

-sn numa_nodes per_node

-SS

-t sec

22

Specifiesthe number of NUMA nodes per node to be allocated.
Insert a space between - sn and numa_nodes_per_node. The
numa_nodes per_node value can be 1 or 2 on Cray XE5 and

Cray XK6 compute nodes, or 1, 2, 3, 4 on Cray XE6 compute
nodes. The default is no placement constraints. You can use this
option to find out if restricting your PEsto one NUMA node per node
affects performance.

A zero valueisnot allowed and is afatal error.

Specifies strict memory containment per NUMA node. When - ss
is specified, a PE can alocate only the memory that islocal to its
assigned NUMA node.

The default is to alow remote-NUMA-node memory allocation to
all assigned NUMA nodes. You can use this option to find out if
restricting each PE's memory access to local-NUMA-node memory
affects performance.

Synchronizes the application's st dout and st der r to prevent
interleaving of its output.

Specifiesthe per-PE CPU time limit in seconds. The sec timelimit is
constrained by your CPU time limit on the login node. For example,
if your time limit on the login node is 3600 seconds but you specify a
-t value of 5000, your application is constrained to 3600 seconds
per PE. If your time limit on the login nodeisunl i ni t ed, the sec
valueis used (or, if not specified, the time per-PE is unlimited). You
can determine your CPU time limit by using thel i ni t command
(csh) ortheul i m t -a command (bash).

S-2496-42

Running Applications [2]

Note: For OpenMP or multithreaded applications where processes
may have child tasks, the time used in the child tasks accumulates
against the parent process. Thus, it may be necessary to multiply
the sec value by the depth value in order to get areal-time value
approximately equivalent to the same value for the PE of a
non-threaded application.

. (colon) Separates the names of executables and their associated options
for Multiple Program, Multiple Data (MPMD) mode. A spaceis
required before and after the colon.

2.1.1 ALPS Application Environment Variables
The following environment variables modify the behavior of apr un:
APRUN_DEFAULT_MEMORY

Specifiesdefault per PE memory size. An explicit apr un - mvaue
overrides this setting.

APRUN_XFER LI M TS

Setsther i mt () transfer limitsfor aprun. If thisissettoa
non-zero string, apr un will transfer the{ get , set}rlimt ()
limitsto api ni t, which will use those limits on the compute nodes.
If it isnot set or set to 0, none of the limits will be transferred other
than RLI M T_CORE, RLI M T_CPU, and possibly RLI M T_RSS.

APRUN_SYNC_TTY

Sets synchronoust t y for st dout and st derr output. Any
non-zero value enables synchronoust t y output. An explicit apr un
- T value overrides this value.

PGAS_ERROR FI LE

Redirects error messages issued by the PGAS library (I i bpgas)
to standard output stream when set to st dout . The default is
stderr.

S-2496-42 23

Workload Management and Application Placement for the Cray Linux Environment™

CRAY_CUDA_PROXY

Overrides the site default for execution in simultaneous contexts on
GPU-equipped nodes. Setting CRAY_CUDA_PROXY to 1 or on
will explicitly enable the CUDA proxy. To explicitly disable CUDA
proxy, set to O or of f . Debugging and use of performance tools
to collect GPU statistics is only supported with the CUDA proxy
disabled.

APRUN_PRI NT_API D

When this variable is set and output is not suppressed with the - g
option, the APID will be displayed upon launch and/or relaunch.

ALPS will pass values to the following application environment variable:
ALPS_APP_DEPTH

Reflectsthe apr un - d value as determined by apshepher d. The
default is 1. The value can be different between compute nodes or
sets of compute nodes when executing a MPMD job. In that case,
an instance of apshepher d will determine the appropriate value
locally for an executable.

2.1.2 Usage Output String

utime, stime, maxrss, i nbl ocks and out bl ocks are printed to st dout
upon application exit. The values given are approximate as they are a rounded
aggregate scaled by the number of resources used. For more information on these
values, see the get r usage(2) man page.

2.2 Understanding Application Placement

24

The apr un placement optionsare- n, - N, - d, and - m ALPS attempts to use the
smallest number of nodes to fulfill the placement requirements specified by the - n,
-N,-d,-S,-sl,-sn, and/or - mvalues. For example, the command:

% aprun -n 32 ./a.out
places 32 PEs on:

e Cray XE5 dual-socket, quad-core processors on 4 nodes
e Cray XE5 dual-socket, six-core processors on 3 nodes

» Cray XEG6 dual-socket, eight-core processors on 2 nodes
e Cray XE6 dual-socket, 12-core processors on 2 nodes

e Cray XEG6 dual-socket, 16-core processors on 1 node

Note: Cray XK nodes are populated with single-socket host processors. Thereis
still @ one-to-one relationship between PEs and host processor cores.

S-2496-42

Running Applications [2]

The above apr un command would place 32 PEs on:

Cray XK single-socket, eight-core processors on 4 nodes.
Cray XK single-socket, 12-core processors on 3 nodes.
Cray XK single-socket, 16-core processors on 2 nodes.

The memory and CPU affinity options are optimization options, not placement
options. You use memory affinity options if you think that remote-NUMA-node
memory references are reducing performance. You use CPU affinity optionsif you
think that process migration is reducing performance.

Note: For examples showing how to use memory affinity options, see Using
apr un Memory Affinity Options on page 104. For examples showing how to use
CPU affinity options, see Using apr un CPU Affinity Options on page 105.

2.2.1 System Interconnnect Features Impacting Application Placement

S-2496-42

ALPS uses interconnect software to make reservations available to workload
managers through the BASIL API. The following interconnect features are used
through ALPS to allocate system resources and ensure application resiliency using
protection and communication domains:

Node Trandation Table (NTT) — assists in addressing remote nodes within the
application and enables software to address other NICs within the resource space
of the application. NTTs have a value assigned to them called the granularity
value. There are 8192 entries per NTT, which represents a granularity value of

1. For applications that use more than 8192 compute nodes, the granularity value
will be greater than 1.

Protection Tag (pTag) — an 8-bit identifier that provides for memory protection
and validation of incoming remote memory references. ALPS assigns a
pTag-cookie pair to an application. This prevents application interference when
sharing NTT entries. Thisis the default behavior of a private protection domain
model. A flexible protection domain model allows users to share memory
resources amongst their applications. For more information, see Using the apr un
Command on page 15.

Cookies — an application-specific identifier that helps sort network traffic meant
for different layers in the software stack.

Programmable Network Performance Counters — memory mapped registers

in the interconnect ASIC that ALPS manages for use with CrayPat (Cray
performance analysis tool). Applications can share a one interconnect ASIC, but
only one application can have reserved access to performance counters. Thus
compute nodes are assigned in pairs to avoid any conflicts.

These parameters interact to schedule applications for placement.

25

Workload Management and Application Placement for the Cray Linux Environment™

2.2.2 Application Placement Algorithms on Cray Systems

26

In previous versions of the Cray Linux Environment, applications were placed within
the requested compute node resources by numerical node ID (NID) in seria order,

as shown in Figure 1. Each color represents a different application, red being the
largest. The larger blue spheres indicate the direction of origin in these cabinet views
or torus cross-sections. The serial sequence is not necessarily ideal for placement of
large applications within the actual torus topology of the Cray system. Cabinets and
chassis are usually physically interleaved to reduce the maximum cable lengths. NIDs
are numbered in physical order tracking these cabinet placements. While thisaidsin
locating the physical position of the NID in cabinet space, this does not provide for an
easy way to track the nodes or their interconnections within two- or three-dimensional
topology space. Thiswill likely inhibit optimal performance for larger jobs.

Figure 1. Cabinet View Showing Three Applications in Original Serial Ordering

Figure 2 shows the reordered application in the cabinets. The benefit of the new
packing will become more obviousin Figure 4.

S5-2496-42

Running Applications [2]

Figure 2. Cabinet View Showing Three Applications in New Ordering

Figure 3. Topology View of Original Application Ordering

S5-2496-42 27

Workload Management and Application Placement for the Cray Linux Environment™

28

A different view: Figure 3 shows the original ordering for the three applications with
respect to the topology in a"flattened" cross-section.

Figure 4. Topology View of New Application Ordering

To reduce this type of performance hit for large node count jobs, ALPS introduced an
"XYZ" placement method. This method reorders the sequence of the NID numbers
used in assigning placements such that they are placed to conform to the mesh or
torus topology. An example of thisis shown in Figure 4. In an XY Z placement
method, jobs are first packed from origin (0, O, 0) across the x-dimension, then

the y-dimension, and finally the z-dimensions assuming these are ascending in
size—which may not always be the case. A modification to thisis also known as
max-major ordering: performance isimproved for large applications, exploiting the
torus bisection bandwidth by packing the minimum dimension first, the next-smallest
dimension section second, and the largest dimension last. For example in a 10x4x8
topology, XY Z-ordered node coordinates look like the following: (0, 0, 0)...(0, 3, 0)
.. (0,3,7), (1,0, 0). The smallest dimension will vary most quickly.

S-2496-42

Running Applications [2]

S-2496-42

For Cray systems, y-major ordering can be used to exploit the increase in bandwidth
over SeaStar due to the doubling of channélsin the x- and z-directions. This benefit
results from the inclusion of two interconnect chips per package in the Gemini
(Figure 5 and Figure 6). In this ordering, the y-dimension is varied last because it has
the least bisectional bandwidth of the three axes in the torus.

Figure 5. SeaStar Interconnect Links

~, H, -

SeaStar

Figure 6. Gemini Interconnect Links

Gemini

For applications that are considered small node count jobs, the max-major and
y-major placement methods may not be optimal. In fact for these types of jobs the
original serial NID ordering has shown better bisectional bandwidth if the jobs are
confined to a chassis within the Cray system. This effect is compounded by the

fact that more applications can fit into the "small node count jobs" category as core
density grows with successive processor generations. CLE introduced the hybridized
xyz-by2 NID ordering method to leverage both the communications improvement
found with XY Z placement methods and the benefit of the original ssimple NID
ordering for small node count jobs. Cray recommends that sites use this NID ordering
for best performance.

29

Workload Management and Application Placement for the Cray Linux Environment™

The following is the section in/ et ¢/ sysconfi g/ al ps that describes the
selections available to system administrators for NID ordering choice is used on the
Cray system. You can aso view this file on the login node to view what ordering
the system is using:

<sni p>

The nid ordering option for apbridge can be defi ned.

The choices are: (just |eave unset) or

-On for nunerical ordering, i.e. no special order

-Ox for max-mgjor di mension ordering

-Qy for y-major dinension ordering (for gem ni systens of 3+ cabinets)
-O for reverse of max (i.e. mn) ordering

-Of for field ordering (uses od_allocator_id col um)

-2 for 2x2x2 ordering

ALPS_NI DORDER="- O«"

<sni p>

HHHFHHH

If ALPS_NI DORDER is not specified, On is the default.

e - (Onistheold default option that uses serial ordering; based solely on ascending
NID vaue.

e - Ox ismax-major NID ordering.

e - Oy isy-magjor dimension ordering, which will order along the y-axis last to
exploit the bandwidth in Gemini networks.

e - O isreverse max-magjor NID ordering. Cray providesthis NID ordering for
experimental purposes only, there is no evidence it provides a performance
improvement, and Cray does not recommend this option for normal use.

e - O givesthe system administrator the option to customize NID ordering based
on site preferences.

e - (2 Assigns order of nodes based on the xyz-by2 NID reordering method, which
isamerger of the incidental small node packing of the simple NID number
method and the inter-application interaction reduction of the "xyz" method.

Note: Cray recommends this option for Cray XE and Cray XK systems. Use
of this option results in better application performance for larger applications
running on Cray XE and Cray XK systems.

2.3 Gathering Application Status and Information on the Cray
System

Before running applications, you should check the status of the compute nodes.

There are two ways to do this: using theapst at and the xt nodest at commands.

30 S-2496-42

Running Applications [2]

Theapst at command provides status information about reservations, compute
resources, pending and placed applications, and cores. The format of the apst at
command is:

apstat [-a][-c][-A apid.. | -Rresd..][-f column
lis[-G[-n[-nol-ng][-P] [-p] [-r] [-sI[-v] [-X] [-z]

You can use apst at to display the following types of status information:

o dl applications

» placed applications

« applications by application IDs (APIDs)

« applications by reservation IDs (ReslIDs)

e protection domain information (e.g., pTags, cookies)

» hardware information such as number of cores, accelerators, and memory
* pending applications

» confirmed and claimed reservations

For example:

% apstat -a
Total placed applications: 3

Pl aced Api d ResID User PEs Nodes Age State Conmmand
48062 6 bill 1 1 4h02m run | sms
48108 1588 jim 4 1 Oh15m run gtp
48109 1589 sue 4 2 0hO7m run bench6

Adding the - v option adds the following output to the above:

% apstat -av
...snip...
Application detail
Ap[1]: apid 48062, pagg 0x5201, resld 6, user bill,
gid 12790, account 0, tine 0, nornal
Batch System | D = 171737
Created at Tue Aug 23 08:17:07 2011
Originator: aprun on NID 26, pid 21089
Nunmber of conmands 1, control network fanout 32
Net wor k: pTag 154, cooki e 0x878e0000, NTTgran/entries 1/1, hugePageSz 2M
Crd[0]: Isns -n 1, 1024MB, XT, nodes 1
Pl acement list entries: 1

S-2496-42 31

Workload Management and Application Placement for the Cray Linux Environment™

Most of these values were discussed in greater detail in System Interconnnect
Features Impacting Application Placement on page 25 but the following items are
brief descriptions of the new apst at display values:

e pTag — 8-bit protection tag identifier assigned to application
» cookie — 32-bit identifier used to negotiate traffic between software application

e NTTgran/entries — Network Transglation Table (NTT) granularity value and
number of NTT entries. The NTT contains NIC addresses of compute nodes
accessible by this application; ALPS assigns a granularity value of either 1,
2,4, 8, 16, or 32. The combination of apTag and the NTT creates a unique
application identifier and prevents interference between applications.

» hugePageSz — Indicates hugepage size value for the application.
Adding the - p option when applications are pending changes the following options:

* PerfCtrs — Indicates that a node considered for placement was not available
because it shared a network chip with a node using network performance counters

» pTags— Indicates the application was not able to allocate afree pTag

An APID isalso displayed in the apst at display after apr un execution results.
For example:

% aprun -n 2 -d 2 ./onpl

Hello fromrank O (thread 0) on ni d00540

Hello fromrank 1 (thread 0) on ni d00541

Hello fromrank O (thread 1) on ni d00540

Hello fromrank 1 (thread 1) on ni d00541
Application 48109 resources: utine ~0s, stine ~0s%

Theapst at - n command displays the status of the nodes that are UP and core
status. Nodes are listed in sequentia order:

% apstat -n
NID Arch State HWRv Pl PgSz Avl Conf Placed PEs Apids

48 XT UP I 4 1 1 4K 2048000 512000 512000 1 28489
49 XT UP | 4 1 1 4K 2048000 512000 512000 1 28490
50 XT U I 4 - - 4K 2048000 0 0 0
51 XT U I 4 - - 4K 2048000 0 0 0
52 XTUP I 4 1 1 4K 2048000 512000 512000 1 28489
53 XTUWU I 4 - - 4K 2048000 0 0 0
54 XT U I 4 - - 4K 2048000 0 0 0
56 XT U I 4 - - 4K 2048000 0 0 0
56 XTUu I 8 1 1 4K 4096000 512000 512000 1 28490
58 XTUWw I 8 - - 4K 4096000 0 0 0
59 XTUWw I 8 - - 4K 4096000 0 0 0
Conput e node summary

arch config up use held avail down

XT 20 11 4 0 7 9

32 S-2496-42

Running Applications [2]

Theapst at - no command displays the same information as apst at - n,
but the nodes are listed in the order that ALPS used to place an application.
Site administrators can specify non-sequential node ordering to reduce system
interconnect transfer times.

% apstat -no

NID Arch State HWRv Pl PgSz Avl Conf Placed PEs Apids
14 XT UP B 24 24 - 4K 8192000 8189952 0 0
15 XTUP B24 1 - 4K 8192000 341248 0 0
16 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
17 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
18 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
19 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
20 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
21 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
32 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
33 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
34 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
355 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
36 XT UP B 24 24 24 4K 8192000 8189952 8189952 24 290266
.snip...

Conput e node sunmary
arch config up use held avail down
XT 1124 1123 379 137 607 1

where HWis the number of coresin the node, Rv is the number of cores held in a
reservation, and Pl isthe number of cores being used by an application. If you
want to display a0 instead of a- inthe Rv and Pl fields, add the - z option to the
apst at command.

Thefollowing apst at - n command displays ajob using core speciaization,
demarked by the + sign:

% apstat -n
NID Arch State HWRv Pl PgSz Avl Conf Placed PEs Apids

84 XT UP B 8 8 7+ 4K 4096000 4096000 4096000 8 1577851
85 XTUP B 8 2 1+ 4K 4096000 4096000 4096000 8 1577851
86 XTUP B 8 8 8 4K 4096000 4096000 4096000 8 1577854

Forapi d 1577851, atotal of 10 PEs are placed. On ni d00084, eight cores are
reserved but the 7+ indicates that seven PEs were placed and one core was used for
system services. A similar situation appears on ni d00085 three cores are reserved,
two application PEs are placed on two cores, and one core is used for system services.
For more information, see Core Specialization on page 38.

33

Workload Management and Application Placement for the Cray Linux Environment™

34

apst at - Gwill give general information about all nodes that have an accelerator:

% apstat -G
GPU Accel erators

NI D Modul e State Menory(M) Fam |y Resld
6 0 upP 6144 Tesl a_X2090 928
7 0 UP 6144 Tesl a_X2090 928
10 0 upP 6144 Tesl a_X2090 928
11 0 uP 6144 Tesl a_X2090 928

Modul e isthe accelerator module number on the node; O isthe only valid value.
Menor y isthe amount of accelerator memory on the node. Farmi | y isthe name of
the particular accelerator product line; in this case it isNVIDIA Teda.

Using the new custom column output option (- f), you can specify which apst at
display you want to see. For example, to see the NID, Placed, and APID columns one
would put the format string in a quote-enclosed comma separated list:

apstat -no -f "N D, pl aced, api ds"
NID Placed Api ds

28 0
29 0
2 0
3 0

764 8388608 6817081
765 8388608 6817081
738 8388608 6817081
739 8388608 6817081
736 8388608 6817081
737 8388608 6817081
766 8388608 6817081
767 8388608 6817081
576 8388608 6817081
577 8388608 6817081
606 8388608 6817081
607 8388608 6817081
544 8388608 6817081

Here's an arbitrarily changed format string displaying compute units:

apstat -no -f "N D, api ds, CU'

NI D Api ds CU
28 24
29 24

2 24
3 24

764 16

765 16

738 16

S-2496-42

Running Applications [2]

2.3.1 Using the xt nodest at Command

% xt nodest at
Current Allocation Status at Tue Aug 23 13:30:16 2011

cln0 ------

n3 S-S-S-S -e
n2 S-S-S-S- cd
nl S-S S-SX -g
cOn0 S-S- S-S -f
s01234567 01234567 01234567 01234567

The xt nodest at command is another way to display the current job and node
status. Each character in the display represents a single node. For systemsrunning a
large number of jobs, multiple characters may be used to designate a job.

C2-0 C3-0
D A

---- -_a _____________

cot A a-- - Xem mmmmemo-
e
sec- <-Xe---X bb-b----
------------ bb- b- - - -
____________ bb------
____________ bb------

Legend:
nonexi st ent node S service node
; free interactive conmpute node - free batch conpute node
A allocated interactive or ccmnode ? suspect conpute node
W waiting or non-running job X down conpute node
Y down or admi ndown service node Z admi ndown conpute node
Avai | abl e conpute nodes: 0 interactive, 343 batch
Job ID User Si ze Age State comand |ine
a 762544 userl 1 0h00Om run test _zgetrf
b 760520 user2 10 1h28m run gs_count _gpu
c 761842 user3 1 0h40m run user Test
d 761792 user3 1 0h45m run user Test
e 761807 user3 1 0h43m run user Test
f 755149 user4 1 5h13m run | ss
g 761770 user3 1 0h47m run user Test

S-2496-42

Thext nodest at command displays the allocation grid, alegend, and ajob listing.
The column and row headings of the grid show the physical location of jobs. C
represents a cabinet, ¢ represents a chassis, s represents aslot, and n represents a
node.

Note: If xt nodest at indicates that no compute nodes have been allocated for
interactive processing, you can still run your job interactively by using the qsub
- I command. Then launch your application with the apr un command.

35

Workload Management and Application Placement for the Cray Linux Environment™

% xt procadm n -

NI D
1
2
5
6
12
13
14
15
20
21
22
23
36
37
38
39

(HEX)
Ox1
0x2
0x5
0x6
Oxc
Ooxd
Oxe
Ooxf
0x14
0x15
0x16
0x17
0x24
0x25
0x26
0x26

Usethext procadmni n - A command to display node attributes that show both the
logical node IDs (NI D heading) and the physical node |Ds (NODENAME heading):

NODENAMVE

cO0-
c0-
c0-
cO0-
c0-
c0-
c0-
c0-
cO0-
cO0-
c0-
cO0-
cO0-
c0-
cO0-
c0-

0c0sOn1
0c0s0n2
0cOs1nl
0c0s1n2
0c0s3n0
0c0s3nl
0c0s3n2
0c0s3n3
0c0s5n0
0c0s5n1
0c0s5n2
0c0s5n3
0c0s9n0
0c0s9n1
0c0s9n2
0c0s9n3

TYPE ARCH
xt (service)
xt (service)
xt (service)
xt (service)

service
service
service
service
conput e
conput e
conput e
conput e
conput e
conput e
conput e
conput e
conput e
conput e
conput e
conput e

xt
xt
xt
xt
xt
xt
xt
xt
xt
xt
xt
xt

s

CNL
CNL
CNL
CNL
CNL
CNL
CNL
CNL
CNL
CNL
CNL
CNL

CPUS CU AVAI LMEM

12
12
16
12
32
32
32
32
32
32
32
32
32
32
32
32

(o<l e)Re))

6
16
16
16
16
16
16
16
16
16
16
16
16

32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768

PAGESZ CLOCKMHZ GPU SOCKETS DI ES C/ CU

4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

2500
2500
2600
2500
2700
2700
2700
2700
2700
2700
2700
2700
2700
2700
2700
2700

[eNeNeNeNeNeNeNeoNeNeNe oo Ne No Neo)

NNNNNNNNNNNNRRRP P

1

NN NNNNNNNNNNPRE PP

2

NN NNNNNNNNNNDNDNODDN

For more information, see the xt nodest at (1) and xt pr ocadni n(8) man pages.

2.4 Using the cnsel ect Command

36

The apr un utility supports manual and automatic node selection. For manual
node selection, first use the cnsel ect command to get a candidate list of
compute nodes that meet the criteria you specify. Then, for interactive jobs
usethe aprun - L node list option. For batch and interactive batch jobs, add
- | nppnodes=\ " node_list\ " to the job script or the gsub command line.

The format of thecnsel ect command is:

[-1] [-L fiddname] [-U [-D [-c] [-V] [[-€] expression]

where:

- | liststhe names of fieldsin the compute nodes attributes database.

Note: Thecnsel ect utility displays nodei ds, sorted by ascending NID
number or unsorted. For some sites, node IDs are presented to ALPS in
non-sequential order for application placement. Site administrators can specify
non-sequentia node ordering to reduce system interconnect transfer times.

- L fieldnamelists the current possible values for a given field.

- U Causes the user-supplied expression to not be enclosed in parentheses but
combined with other built-in conditions. This option may be needed if you add

other SQL qualifiers(such as ORDER BY) to the expression.

- V prints the version number and exits.

- ¢ gives a count of the number of nodes rather than alist of the nodes

themselves.

[- e] expression queries the compute node attributes database.

S-2496-42

Running Applications [2]

You can use cnsel ect to get alist of nodes selected by such characteristics as
the number of cores per node (nuntor es), the amount of memory on the node
(in megabytes), and the processor speed (in megahertz). For example, to run an

application on Cray XK6 16-core nodes with 32 GB of memory or more, use:

% cnsel ect nuntores.eq.16 .and. avail nem gt. 32000
268- 269, 274- 275, 80- 81, 78- 79
% aprun -n 32 -L 268-269 ./appl

Note: Thecnsel ect utility returns- 1 to st dout if the nunctor es criteria
cannot be met; for example nuntor es. eq. 16 on asystem that has no 16-core
compute nodes.

You can also use cnsel ect to get alist of nodesif a site-defined label exists. For
example, to run an application on six-core nodes, you might use:

% cnselect -L labell

HEX- CORE

DODEC- CORE

16- Core

% cnsel ect -e "l abel 1. eq."' HEX- CORE' "
60- 63, 76, 82

% aprun -n 6 -L 60-63,76,82 ./appl

If you do not include the - L option on the apr un command or the - | nppnodes
option on the gsub command, ALPS automatically places the application using
available resources.

2.5 Understanding How Much Memory is Available to

Applications

S-2496-42

When running large applications, you should understand how much memory will be
available per node. Cray Linux Environment (CLE) uses memory on each node for
CNL and other functions such as 1/0 buffering, core specialization, and compute node
resiliency. The remaining memory is available for user executables; user data arrays;
stacks, libraries and buffers; and the SHMEM symmetric stack heap.

The amount of memory CNL uses depends on the number of cores, memory size,
and whether optiona software has been configured on the compute nodes. For a
24-core node with 32 GB of memory, roughly 28.8 to 30 GB of memory is available
for applications.

The default stack sizeis 16 MB. You can determine the maximum stack size by using
thel i m t command (csh) ortheul i Mt - a command (bash).

Note: The actual amount of memory CNL uses varies depending on the total
amount of memory on the node and the OS services configured for the node.

37

Workload Management and Application Placement for the Cray Linux Environment™

You can usethe apr un - m size option to specify the per-PE memory limit. For
example, this command launches xt hi on cores 0 and 1 of compute nodes 472 and
473. Each node has 8 GB of available memory, allowing 4 GB per PE.

% aprun -n 4 -N 2 -md000 ./xthi | sort

Application 225108 resources: utine ~0s, stine ~0s
PE 0 ni dO0472 Core affinity
PE 1 ni d00472 Core affinity
PE 2 ni d00473 Core affinity
PE 3 ni d00473 Core affinity
% aprun -n 4 -N 2 -m4001 ./ xt hi
Cl ai m exceeds reservation's nmenory

1
1
1
1
| sort
r

You can change MPI buffer sizes and stack space from the defaults by setting certain
environment variables. For more details, seethei nt r o_npi (3) man page.

2.6 Core Specialization

CLE offers a core-specialization functionality. Core specialization binds a set of
Linux kernel-space processes and daemons to one or more cores within a Cray
compute node to enable the software application to fully utilize the remaining cores
withinitscpuset . Thisrestricts all possible overhead processing to the specialized
cores within the reservation and may improve application performance. To help
users calculate the new "scaled-up" width for a batch reservation that uses core
specidization, use the apcount tool.

Note: apcount will work only if your system has uniform compute node types.

See the apcount (1) man page for further information.

2.7 Launching an MPMD Application

38

Theapr un utility supports multiple-program, multiple-data (MPMD) launch mode.
To run an application in MPMD mode under apr un, use the colon-separated - n pes
executablel : - n pesexecutable? : ... format. In the first executable segment, you
may use other apr un optionssuchas- cc,-cp,-d,-L,-n,-N,-S,-sl,-sn,
and - ss. If you specify the - moption it must be specified in the first executable
segment and the value is used for all subsequent executables. If you specify - m
more than once while launching multiple applicationsin MPMD mode, apr un

will return an error. For MPI applications, all of the executables share the same

MPI _COVM WORL D process communicator. MPMD mode will not work for system
commands and applications require at the least an enclosure within MPl _| ni t ()
and MPl _Fi nal i ze() environment management routines.

S-2496-42

Running Applications [2]

For example, this command launches 128 instances of pr ogr aml and 256 instances
of progr an?:

aprun -n 128 ./progranl : -n 256 ./progran?
A spaceisrequired before and after the colon.

Note: MPMD applications that use the SHMEM parallel programming model,
either standalone or nested within an MPI program, are not supported on Gemini
based systems.

2.8 Managing Compute Node Processors from an MPI Program

MPI programs should call the MPl _Fi nal i ze() routine at the conclusion of the
program. This call waits for al processing elements to complete before exiting. 1f
one of the programsfailsto call MPl _Fi nal i ze() , the program never completes
and apr un stops responding. There are two ways to prevent this behavior:

* Usethe PBS Professional elapsed (wall clock) time limit to terminate the job after
aspecifiedtimelimit (suchas-1 wal | ti ne=2: 00: 00).

 Usetheaprun -t secoption toterminate the program. This option specifiesthe
per-PE CPU time limit in seconds. A process will terminate only if it reaches the
specified amount of CPU time (not wallclock time).

For example, if you use:

% aprun -n 8 -t 120 ./nyprogl

and a PE uses more than two minutes of CPU time, the application terminates.

2.9 About apr un Input and Output Modes

The apr un utility handles standard input (st di n) on behalf of the user and
handles standard output (st dout) and standard error messages (st der r) for user
applications.

2.10 About apr un Resource Limits

S-2496-42

apr un utility does not forward its user resource limits to each compute node (except
for RLI M T_CORE and RLI M T_CPU, which are aways forwarded).

You can set the APRUN_XFER_LI M TS environment variableto 1 (expor t
APRUN_XFER LI M TS=1 or set env APRUN_XFER LI M TS 1) to enable the
forwarding of user resource limits. For more information, seethegetrli m t (P)
man page.

39

Workload Management and Application Placement for the Cray Linux Environment™

2.11 About apr un Signal Processing
The apr un utility forwards the following signals to an application:

« SIGHUP
« SIGNT
. SIGUIT
« S| GTERM
S| GABRT
« Sl GUSRL
« Sl GUSR2
« Sl GURG
« S| GN NCH

The apr un utility ignores SI GPI PE and SI GTTI Nsignals. All other signals
remain at default and are not forwarded to an application. The default behaviors that
terminate apr un also cause ALPS to terminate the application with a SI GKI LL
signal.

2.12 Reserved File Descriptors

The following file descriptors are used by ALPS and should not be closed by
applications: 100, 102, 108, 110.

40 S-2496-42

Running User Programs on Service
Nodes [3]

To compile a program that you want to run on alogin or other service node, call the
compiler directly.

» For PGI programs, use the pgcc, pgCC, or pgf 95 command.

» For GCC programs, usethegcc, g++, or gf or t r an command.

e For Cray compilers, usethecc, CC, or f t n command.

» For Intel compilers, usethei cc,i cpc,fpp,orifort command.

These compilers will find the appropriate header filesand libraries in their normal
Linux locations.

For example, to run program my_uti | i ty on aservice node, first compile the
program:

% nodul e | oad pg
% pgCC -0 ny_utility nmy_utility.C

Thenrunny_utility:
%ny_utility
In mai n(0)

In functionx(0)
Back in main()

S-2496-42 41

Workload Management and Application Placement for the Cray Linux Environment™

42 S-2496-42

Using Workload Management Systems [4]

Your Cray system may include the optional PBS Professional, Moab and TORQUE,
or Platform L SF workload management system (WMS). If so, your system can be
configured with a given number of interactive job processors and a given number
of batch processors. A job that is submitted as a batch process can use only the
processors that have been allocated to the batch subsystem. If ajob requires more
processors than have been allocated for batch processing, it remains in the batch
gueue but never runs.

Note: At any time, the system administrator can change the designation of any
node from interactive to batch or vice versa. This change does not affect jobs
already running on those nodes. It applies only to jobs already in the queue and
jobs submitted later.

The basic process for creating and running batch jobs is to create a job script that
includes apr un commands, then use the gsub command to run the script.

4.1 Creating Job Scripts

A job script may consist of directives, comments, and executable statements:

#PBS - N job_name

#PBS -1 resource type=specification
#

command

command

PBS Professional and Moab and TORQUE provide a number of resource_type
options for specifying, allocating, and scheduling compute node resources, such as
nppwi dt h (number of processing elements), nppdept h (number of threads per
PE), mppnppn (number of PEs per node), and nppnodes (manual node placement
list). See Table 1 and the pbs_r esour ces(7B) man page for details.

S-2496-42 43

Workload Management and Application Placement for the Cray Linux Environment™

4.2 Submitting Batch Jobs

To submit ajob to the workload management system, load the pbs, noab, or
xt - I sf hpc module:

% nodul e | oad pbs

Or
% nmodul e | oad noab

% nodul e | oad xt- I sfhpc

Then use the gsub command:

% qsub [-1 resource type=specification] jobscript

where jobscript is the name of a job script that includes one or more apr un
commands.

The gsub command scans the lines of the script filefor directives. Aninitial linein
the script that has only the characters#! or the character: isignored and scanning
starts at the next line. A linewith #! / bi n/ shell invokes shell from within the script.
Scanning continues until the first executable line. An executable line is not blank, not
adirective, and does not start with #). If directives occur on subsequent lines after the
first executable line, they are ignored.

When you run the script, gsub displays the Job ID. You can use the gst at
command to check on the status of your job and the gdel command to remove a
job from the queue.

If aqsub option is present in both a directive and on the command line, the
command line takes precedence. If an option is present in a directive and not on the
command line, that option and its argument, if any, are processed as if you included
them on the command line.

Table 1 listsapr un options and their counterpart gsub -1 options:

Table 1. apr un Versus gsub Versus bsub (LSF) Options

apr un Option gsub -1 Option bsub Option Description

-n 4 -1 nppw dt h=4 -n 4 Width (number of PESs)

-d 2 -1 nppdept h=2 N/A Depth (number of CPUs
hosting OpenM P threads)

-N 1 -1 nppnppn=1 L SF currently assumes a Number of PES per node

uniform processor pool
-L 5,6,7 - N/A Candidate node List
nppnodes=\"5,6, 7\"
-m 1000 -1 nppmem=1000 -M 1000 Memory per PE
44 S-2496-42

Using Workload Management Systems [4]

For further information about gsub - | options, seethe pbs_r esour ces(7B)

man page.

For examples of batch jobs that use apr un, see Running a Batch Job Script on

page 99.

4.3 Getting Job Status

Theqgst at command displays the following information about al active batch jobs:

% gst at
Job id

84. ni d00003
33. ni d00003
34. ni d00003

Thejob identifier (Job i d) assigned by the WM S

The job name (Nane)

The job owner (User)

CPU time used (Ti me Use)

Thejob state S is:

C (job is complete)

E (job is exiting)

H (job is held)

Q(job isin the queue)

R (job is running)

S (job is suspended)

T (job is being moved to a new location)

W(job iswaiting for its execution time)

The queue (Queue) in which the job resides

For example:
Narme User Ti me Use
test_ost4_7 usera 03: 36: 23
run. pbs userb 00: 04: 45
run. pbs userb 00: 04: 45
STDIN userc 00: 03: 10

35. ni d00003

S-2496-42

45

Workload Management and Application Placement for the Cray Linux Environment™

% gstat -a

. ni d00003
. ni d00003
. ni d00003

If the - a option is used, queue information is displayed in an aternative format.

Req'd Req'd El ap

User nane Queue Jobnane SessI D NDS TSK Menory Time S Tine
usera wor kq test_ost4_7 -- 1 1 -- -- Q --
userb wor kg run. pbs -- 1 1 -- -~ Q --
userb wor kg run. pbs -- 1 1 -- -~ Q --
userc wor kq STDI N -- 1 1 - - -~ Q --

. ni d00003

For details, see the gst at (1B) man page.

4.4 Removing a Job from the Queue

Theqgdel command removes a batch job from the queue. Asauser, you can remove
any batch job that you own. Jobs are removed from the queue in the order they are

46

presented to gdel . Seethe qdel (1B) man page for more information.

S-2496-42

Dynamic Shared Objects and Libraries

(DSLs) [5]

5.1 Introduction

Cray supports dynamically linking applications with shared objects and libraries.
Dynamic shared objects allow for use of multiple programs that require the same
segment of memory address space to be used during linking and compiling. This
functionality enables many previously unavailable applications to run on Cray
systems and may reduce executable size and improve optimization of system
resources. Also, when shared libraries are changed or upgraded, users do not need
to recompile dependent applications. Cray Linux Environment uses Cray Data
Virtualization Service (Cray DV'S) to project the shared root onto the compute nodes.
Thus, each compute node, using its DV S-projected file system transparently, cals
shared libraries located at a central location.

5.2 About the Compute Node Root Run Time Environment

CLE facilitates compute node access to the Cray system shared root by projecting it
through Cray DVS. DVSis an 1/O forwarding mechanism that provides transparent
access to remote file systems, while reducing client load. DV S allows users and
applications running on compute nodes access to remote POSIX-compliant file
systems.

ALPS runs with applications that use read-only shared objects. When a user runs
an application, ALPS launches the application to the compute node root. After
installation, the compute node root is enabled by default. However, an administrator
can define the default case (DSO support enabled or disabled) per site policy. Users
can override the default setup by setting an environment variable, CRAY_ROOTFS.

5.2.1 DSL Support

S-2496-42

CLE supports DSLs for following cases:
» Linking and loading against programming environments supported by Cray
e Useof standard Linux services usually found on service nodes.

Launching terminal shells and other programming language interpreters by using the
compute node root are not currently supported by Cray.

47

Workload Management and Application Placement for the Cray Linux Environment™

5.3 Configuring DSL

48

The shared root / et ¢/ opt/ cray/ cnrte/ roots. conf filecontains
site-specific values for custom root file systems. To specify a different pathname
for r oot s. conf, edit the configurationfile/ et c/ sysconfi g/ xt . conf and
change the value for the variable, CRAY_ROOTFS_CONF. Inther oot s. conf
file, the system default compute node root used is specified by the symbolic name
DEFAULT. If no default value is specified, / will be assumed. In the following
example segment of r oot s. conf , the default case uses the root mounted at on the
compute nodes at / dsl :

DEFAULT=/ dsl

I NIl TRAMFS=/
DSL=/ dsl

A user can override the system default compute node root value by setting the
environment variable, CRAY_ROOTFS, to avalue from ther oot s. conf file. This
setting effectively changes the compute node root used for launching jobs. For
example, to override the use of / dsl , a user would enter something similar to the
following example at the command line on the login node:

% export CRAY_ROOTFS=| Nl TRAMFS

If the system default isusing i ni t r anf s, enter something like the following at
the command line on the login node to switch to using the compute node root path
specified by DSL:

% export CRAY_ROOTFS=DSL

An administrator can modify the contents of thisfileto restrict user access. For
example, if the administrator wants to allow applications to launch only by using the
compute node root, ther oot s. conf filewould read as follows:

% cat /etc/opt/cray/cnrte/roots. conf
DEFAULT=/ dsl

For more information, see Managing System Software for Cray XE and Cray XK
Systems.

S-2496-42

Dynamic Shared Objects and Libraries (DSLs) [5]

5.4 Building, Launching, and Workload Management Using
Dynamic Objects

5.4.1 Linker Search Order

Search order is an important detail to consider when compiling and linking
executables. The dynamic linker uses the following search order when loading a
shared object:

e Vaueof LD LI BRARY_ PATH environment variable.

» Value of DT_RUNPATH dynamic section of the executable, which is set using the
| d - r pat h command. You can add a directory to the run time library search
path using the | d command. However, when a supported Cray programming
environment is used, the library search path is set automatically. For more
information please see the | d(1) man page.

» The contents of the human non-readable cachefile/ et ¢/ | d. so. cache. The
/etc/ld. so.conf containsalist of commaor colon separated path names to
which the user can append custom paths.

* Thepaths/liband/usr/lib.

L oading a programming environment modul e before compiling will appropriately set
the LD_LI BRARY_PATH environment variable. Conversely, unloading modules will
clear the stored value of LD _LI BRARY _PATH. Other useful environment variables
arelisted inthel d. so(8) man page. If a programming environment module is
loaded when an executable that uses dynamic shared objectsis running, it should

be the same programming environment used to build the executable. For example,

if aprogram is built using the PathScale compiler, the user should load the module,
Pr gEnv- pat hscal e, when setting the environment to launch the application.

Example 1. Compiling an application

Compile the following program, r educe_dyn. ¢, dynamically by including the
compiler option dynani c.

S-2496-42 49

Workload Management and Application Placement for the Cray Linux Environment™

The C version of the program, r educe_dyn. c, looks like:

/* program reduce_dyn.c */
#i ncl ude <stdio. h>
#i ncl ude "npi.h"

int main (int argc, char *argv[])

{

int i, sum nype, npes, nres, ret;

ret = MPl_Init (&argc, &argv);

ret = MPl _Comm size (MPI _COWM WORLD, &npes);
ret = MPI _Commrank (MPI_COWM WORLD, &nype);
nres = 0O;

sum = 0;

for (i = nype; i <=100; i += npes)
{
sum = sum + i;
}
(void) printf ("M PE % MW part: %\ n", nype, sunm;
ret = MPl _Reduce (&sum &nres, 1, MPl _| NTEGER, MPI _SUM 0, MPI _COVM WORLD) ;

it (nype == 0)
{

(void) printf ("PE % Total is:%\n", mype, nres);
}

ret = MPl_Finalize ();
}

Invoke the C compiler using cc and the dynarmi ¢ option:

% cc -dynam ¢ reduce_dyn.c -o reduce_dyn

Alternatively, you can use the environment variable, XTPE_LI NK_TYPE, without
any extra compiler options:

% export XTPE_LI NK_TYPE=dynami c
% cc reduce_dyn.c -0 reduce_dyn

You can tell if an executable uses a shared library by executing thel dd command:

% | dd reduce_dyn
libsci.so => /opt/xt-libsci/10.3.7/pgi/lib/libsci.so (0x00002b1135e02000)

libfftwd.so.3 => /opt/fftw3.2.1/1ib/libfftw3.so.3 (0x00002b1146e92000)
libfftwdf.so0.3 => /opt/fftw 3.2.1/1ib/libfftwdf.so.3 (0x00002b114710a000)
libsma.so => /opt/npt/3.4.0.1/xt/sma/lib/libsm. so (0x00002b1147377000)
libnpich.so.1.1 => /opt/npt/3.4.0.1/ xt/ npich2-pgi/lib/libnpich.so.1.1 (0x00002b11474a0000)
librt.so.1 =>/1ib64/librt.so.1 (0x00002b114777a000)
libpm .so => /opt/npt/3.4.0.1/xt/pm/lib/libpm.so (0x00002b1147883000)
libalpslli.so.0 => /opt/npt/3.4.0.1/xt/util/lib/libalpslli.so.0 (0x00002b1147996000)
libal psutil.so.0 => /opt/npt/3.4.0.1/xt/util/lib/libalpsutil.so.0 (0x00002b1147a99000)
libportals.so.1 => /opt/xt-pe/2.2.32DSL/1ib/libportals.so.1 (0x00002b1147b9c000)
libpthread.so.0 => /1ib64/Iibpthread. so.0 (0x00002b1147ca8000)
libmso.6 => /1ib64/1ibmso.6 (0x00002b1147dc0000)
libc.so.6 => /1ib64/1ibc.so.6 (0x00002b1147f15000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00002b1135ce6000)

There are shared object dependencies listed for this executable. For more
information, please consult the | dd(1) man page.

50 S-2496-42

Dynamic Shared Objects and Libraries (DSLs) [5]

S-2496-42

Example 2. Running an application in interactive mode

If the system administrator has set up the compute node root run time environment for
the default case, then the user executes apr un without any further argument:

% aprun -n 6 ./reduce_dyn

However, if the administrator sets up the system to usei ni t r anf s, then the user
must set the environment variable appropriately:

% export CRAY_ROOTFS=DSL

% aprun -n 6 ./reduce_dyn | sort

Appl i cation 1555880 resources: utinme 0, stine 8
PE:O0 My part:816

My PE:1 My part:833

M PE: 2 My part: 850

My PE:3 My part: 867
M
My

S

PE:4 My part: 884
PE:5 My part: 800
PE: 0 Total is:5050

Example 3. Running an application using a workload management system

Running a program interactively using a workload management system such as PBS
or Moab and TORQUE with the compute node root is essentially the same as running
with the default environment. One exception is that if the compute node root is not
the default execution option, you must set the environment variable after you have run
the batch scheduler command, qsub:

% qsub -1 -1 nppw dt h=4
% export CRAY_ROOTFS=DSL

Alternatively, you can use - V option to pass environment variables to the PBS or
Moab and TORQUE job:

% export CRAY_ROOTFS=DSL
% qsub -V -1 -1 nppw dt h=4

Example 4. Running a program using a batch script

Create the following batch script, r educe_scri pt, tolaunch ther educe_dyn
executable:

#! / bi n/ bash

#reduce_scri pt

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=6

Tell WVMB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ ni d00008/ crayuser nane

nodul e | oad PrgEnv- pgi

aprun -n 6 ./reduce_dyn

exit O

51

Workload Management and Application Placement for the Cray Linux Environment™

Then launch the script using the gsub command:

% export CRAY_ROOTFS=DSL

% qsub -V reduce_script

1674984. sdb

% cat reduce_script. 01674984

Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell.

PE:5 My part: 800

PE:4 My part: 884

PE:1 My part:833

PE:3 My part: 867

PE:2 My part: 850

PE:O My part:816

PE: O Total is:5050

Application 1747058 resources: utime ~0s, stine ~0s

SSESES

5.5 Troubleshooting

5.5.1 Error While Launching with aprun: "error while loading shared
libraries"
If you encounter an error such as:

error while |oading shared libraries: libsci.so: cannot open shared /
object file: No such file or directory

your environment may not be configured to launch applications using shared aobjects.
Set the environment variable CRAY _ROOTFS to the appropriate value as prescribed
in Example 2.

5.5.2 Running an Application Using a Non-existent Root
If you erroneously set CRAY_ROOTFS to a file system not specified in
root s. conf, apr un will exit with the following error:

% set CRAY_ROOTFS=WRONG_FS
% aprun -n 4 -N 1 ./reduce_dyn
aprun: Error fromDSL library: Could not find shared root symbol WRONG FS,
specified by env variable CRAY_ROOTFS, in config file: /etc/opt/cray/cnrtel/roots.conf

aprun: Exiting due to errors. Application aborted

52 S-2496-42

Dynamic Shared Objects and Libraries (DSLs) [5]

5.5.3 Performance Implications of Using Dynamic Shared Objects

S-2496-42

Using dynamic libraries may introduce delays in application launch times because
of shared object loading and remote page faults. Such delays are an inevitable result
of the linking process taking place at execution and the relative inefficiency of
symbol lookup in DSOs. Likewise, binaries that are linked dynamically may cause
asmall but measurable performance degradation during execution. If this delay is
unacceptable, link the application with static libraries.

53

Workload Management and Application Placement for the Cray Linux Environment™

54 S-2496-42

Using Cluster Compatibility Mode in CLE [6]

6.1 Cluster Compatibility Mode

S-2496-42

A Cray system is not a cluster but a massively parallel processing (MPP)
computer. An MPP is one computer with many networked processors used for
distributed computation, and, in the case of Cray system architectures, a high-speed
communications interface that facilitates optimal bandwidth and memory operations
between those processors. When operating as an MPP machine, the Cray compute
node kernel (Cray CNL) typically does not have afull set of the Linux services
available that are used in cluster ISV applications.

Cluster Compatibility Mode (CCM) is a software solution that provides the services
needed to run most cluster-based independent software vendor (I1SV) applications
out-of-the-box with some configuration adjustments. It is built on top of the compute
node root runtime environment (CNRTE), the infrastructure that provides dynamic
library support in Cray systems.

55

Workload Management and Application Placement for the Cray Linux Environment™

6.1.1 CCM Implementation

56

CCM istightly coupled to the workload management system. It enables users to
execute cluster applications together with workload-managed jobs that are running
in a traditional MPP batch or interactive queue (see Figure 7). Essentially, CCM
uses the batch system to logically designate part of the Cray system as an emulated

cluster for the duration of the job.
~
p

Figure 7. Cray Job Distribution Cross Section
(

Service Nodes Cluster Compatibility Mode
Free Compute Nodes -batch queue

Traditional Batch Job .

Cluster Compatibility Mode [;MPPJob batch queue
Application

. J

Users provision the emulated cluster by launching a batch or interactive

job in LSF, PBS or Moab and TORQUE using a CCM-specific queue. The
user-specified nodes in the batch reservation are no longer available for MPP

jobs for the duration of the CCM job. These nodes can be found in the

user directory: $HOVE/ . cr ayccm ccm nodel i st . $PBS_JOBI D or

$HOVE/ . crayccni ccm nodel i st . $LSF_JOBI Dwhere the file name suffix is
the unique job identification created by the batch reservation. The user launches the
application using ccnr un. When the job terminates, the applications clean up and
the nodes are then returned to the free pool of compute nodes (see Figure 8).

S5-2496-42

Using Cluster Compatibility Mode in CLE [6]

Figure 8. CCM Job Flow Diagram

Nodes are provisioned and free MPP compute nodes

placed in ccm_queue using
gsub or bsub

User runs application using
ccmrun with a batch
script or interactively

Application terminates
and CCM processes
cleanup

Cluster job nodes are
returned as free MPP
compute nodes

6.2 Installation and Configuration of Applications for CCM

Users are encouraged to install programs using their local scratch directory and

set paths accordingly to use CCM. However, if an ISV application requires root
privileges, the site administrator must install the application on the boot node's shared
root in xt opvi ew. Compute nodes will then be able to mount the shared root using
the compute node root runtime environment and use services necessary for the ISV

application.

6.3 Using CCM

6.3.1 CCM Commands

After loading the ccmmodule the user can issue the following two commands:
ccnrun and ccm ogi n.

S5-2496-42 57

Workload Management and Application Placement for the Cray Linux Environment™

6.3.1.1 ccnrun

ccnr un, asthe name implies, starts the cluster application. The head nodeis the first
node in the emulated cluster where ccnr un sets up the CCM infrastructure and
propagates the rest of the application. The following shows the syntax for ccnr un:

ccnrun [--help][--ssh][--nossh][--rsh][--norsh][--nscd][--nonscd]

[--rsip][--norsip] executable [executable ar g1] ... [executable ar gn]

where:

--ssh Launches a CCM job with the SSH daemon listening on port
203. Thisisthe default in absence of custom configuration or
environment.

--nosshd Launches a CCM job without an SSH daemon.

--rsh Launches a CCM job with por t map and xi net d daemons on
al compute nodes within the CCM reservation. Thisis the default
behavor.

--norsh Launches a CCM job without the por t map and xi net d daemons.

It's possible this option may improve performance if r sh is not
required by the current job.

--ncsd Launches a CCM job with the name service caching daemon on the
CCM compute nodes. Thisis the default behavior.

--noncsd Launches a CCM job without the name service caching daemon.

--rsip Turns on CCM RSIP (Realm Specific Internet Protocol) Small Port
allocation behavior. When you select this option, RSIP allocates
bind (I NADDR_ANY) requests from non-RSIP port ranges. This
functionality servesto prevent a CCM application from consuming
ports fromin the limited RSIP pool. Thisisthe default behavior.

--norsip Disables RSIP for the CCM application. When this option
is specified, bi nd (I NADDR_ANY) requests from non-RSIP
port ranges. This pool is not generally recommended in most
configurations. Since the number of RSIP ports per host is extremely
limited, specifying this option could cause an application to run out
of ports. However, this option may be helpful if an application fails
in a default environment.

--help Displays ccnr un usage statement.

6.3.1.2 ccnl ogi n

ccml ogi n supportsa- n hostname option. If - n option is specified, services are
not initiated at startup time, and the user does not need to be in a batch session.
ccm ogi n aso supports the - V option, which propagates the environment to
compute nodes in the same manner asssh - V.

58 S-2496-42

Using Cluster Compatibility Mode in CLE [6]

6.3.2 Starting a CCM Batch Job

You can use either PBS, Moab and TORQUE, or Platform LSF (Load Sharing
Facility) to reserve the nodes for the cluster by using the gsub or bsub commands;
then launch the application using ccnr un. All standard workload management
reservation options are supported with ccnr un. An example using the application
isv_app appears below:

Example 5. Launching a CCM application using PBS or Moab and TORQUE
% qsub -1 -1 nppw dt h=32 -q ccm_queue

gsub: waiting for job 434781.sdb to start
gsub: job 434781.sdb ready
Initializing CCM Environnent, please wait

After the user prompt re-appears, run the application using ccnr un:

% ccnrun i sv_app job=e5 cpus=32

An equivalent batch script for this example would look like:

#ntscri pt

#PBS -1 nppw dt h=32

#PBS -q ccm queue

#PBS -j oe

#PBS - S / bi n/ bash

cd $PBS_O WORKDI R

export PATH=${PATH}:/ mt/| ustre_server/ccnuser/isv_app/ Conmands
In-s ../e5.inp e5.inp

export TMPDI R=${PBS_O WORKDI R}/ t enp

nkdi r $TMPDI R

nmodul e | oad ccm

ccnrun i sv_app job=e5 cpus=32 interactive

To submit the job enter the following at the command prompt:
% qsub ntscript

Example 6. Launching a CCM application using Platform LSF

For LSF, bsub requests use node counts rather than core counts while ccnr un till
takes the number of cores as its argument:

% cnsel ect -L nuntores

24

% nodul e | oad xt- I sfhpc

% nmodul e 1 oad ccm

% bsub -n 2 -ext"CRAYXT[]" -q ccm_queue -0
out_file cCnNT UN isv_app j ob=e5 cpus=32

S-2496-42 59

Workload Management and Application Placement for the Cray Linux Environment™

The equivalent batch script for this example would look like:

#l sfscri pt

#! / bi n/ bash

#BSUB -n 2

#BSUB -q ccm queue

#BSUB -0 out_file

. [opt/nodul es/ defaul t/init/bash

cd $LS_SUBCWD

export PATH=${PATH}:/mt/lustre_server/ccnuser/isv_app/ Conmands
In-s ../e5.inp e5.inp

export TMPDI R=${LS_SUBCWD}/t enp

nkdi r $TMPDI R

nodul e | oad ccm

ccnrun i sv_app job=e5 cpus=32 interactive

To submit ajob to LSF, direct | sf scri pt tothe bsub command:

% bsub < |sfscript

6.3.3 X11 Forwarding in CCM

Applications that require X11 forwarding (or tunneling) can use the qsub - V option
to pass the DI SPLAY variable to the emulated cluster. Users can then forward X
traffic by using ccm ogi n, asin the following example:

ssh -Y login

gsub -V -q=ccm queue - nmppw dt h=1
ccmogin -V

6.3.4 ISV Application Acceleration (IAA)

IAA isafeature that potentially improves application performance by enabling the
MPI implementation to directly use the high speed interconnect rather than requiring
an additional TCP/IP layer. To MPI, the Aries or Gemini network looks asif it is
an Infiniband network that supports the standard OFED (OpenFabrics Enterprise
Distribution) API. By default, loading the ccmmodule automatically loads the
cray-i svaccel module, which setsthe general environment options for IAA.
However, there are some settings that are specific to implementations of MPI.

The method of passing these settings to CCM is highly application-specific. The
following serves as a general guide to configuring your application's MPI and setting
up the necessary CCM environment for application acceleration with Infiniband over
the high speed network. Platform MPI and Open MPI are presently supported.

6.3.4.1 Configuring Platform MPI (HP-MPI) and Launching npi r un

60

Cray recommends you pass the - | BV option to npi r un to ensure that Platform MPI
takes advantage of application acceleration. Without this option, any unexpected
problem in application acceleration will cause Platform MPI to fall back to using
TCP/IP, resulting in poor performance without explanation.

S-2496-42

Using Cluster Compatibility Mode in CLE [6]

6.3.4.2 Caveats and Limitations for IAA

You may encounter the following known caveats or limitations when using IAA:

Only Platform MPI and Open MPI are presently supported.
IAA supports up to 2048 processing elements per application.
IAA does not yet support 32-bit applications.

IAA does not support application code that uses alternately named MPI entry
points, suchasPMPI _Init().

Use batch reservation resources efficiently as IAA allocates resources based
on the reservation made for CCM. It is possible that an unnecessarily large job
reservation will result in memory registration errors application failures.

6.3.4.3 Troubleshooting IAA

S-2496-42

"Error detected by IBGNI. Subsequent operation may be
unreliable.

This message indicates that IAA has reported an error to the MPI implementation.
Under most conditions, the MPI will properly handle the error and continue. If
the job completes successfully, Cray recommends that you disregard the warning
messages of this nature. However, if the job aborts, this message can provide
important clues about what went wrong.

"l'i bi bgni: Could not open /tnp/ccmal ps_info (No such
file or directory)."

This means that CCM is improperly configured. Contact your system
administrator if receiving the message.

"Isnod test for MPI _ICMOD IBV__IBV_MAIN could not find
module in list ib _core."

This error indicates that Platform MPI is not correctly configured to use
Infiniband.

"I'i bi bverbs: Fatal: Couldn't read uverbs ABI version."

It is likely that the incorrect version of libibverbs is being linked with the
application, which indicates a CLE installation issue. Contact your system
administrator when you see this error.

"FLEXIm error: -15,570. System Error: 19 " Cannot
assi gn requested address."

61

Workload Management and Application Placement for the Cray Linux Environment™

This error can occur on systems that use Platform MPI and rely on RSIP for
external connectivity. If MPI applications are run in quick succession, the number
of ports available to RSIP become exhausted. The solution isto leave moretime
between MPI runs.

 "l'i bhuget| bfs [ni d000545: 5652]: WARNI NG Layout
problemwi th segnments 0 and 1. Segnents woul d
overl ap."

Thisis awarning from the huge pages library and will not interrupt execution
of the application.

e "npid: 1BV requested on node | ocal host, but not
avai |l abl e."

This happens when running Platform MPI in close succession after accm ogi n.
The solution is to alow enough time between executions of npi r un and
ccm ogi n.

e "Fatal error detected by IBGNI: Network error is
unrecoverabl e: SOURCE_SSI D_SRSP: MDD _| NV*

Thisis asecondary error caused by one or more PEs aborting with subsequent
network messages arriving for them. Check earlier in your program output for
the primary issue.

e "npid: 1BV requested on node | ocal host, but not
avail abl e. ™

If you rerun Platform MPI jobs too close together, it will fail before the IBGNI
packet wait timer compl etes:

user @i d00002: ~/ osu_benchmarks_for_platfornk npirun -np 2 -1BV ./osu_bw
nmpi d: | BV requested on node | ocal host, but not avail abl e.

e "PAM configuration can cause |AAto fail"

The problem results in permission denied errors when 1AA tries to access the
HSN from compute nodes other than the CCM head node. That happens because
the app process is running in a different job container than the one that has
permission to the HSN.

The second job container is created by PAM, specifically the following linein
/ et ¢/ pam d/ comon- sessi on:

session optional /opt/cray/job/default/lib64/security/pamjob.so
e "bind: Invalid argunent"”

Applications using older versions of MVAPICH may abort with this message due
to abug in the MPI implementation. Thisbug is present in, at least, MVAPICH
version 1.2al. Itisfixedin MVAPICH2-1.8a2.

62 S-2496-42

Using Cluster Compatibility Mode in CLE [6]

6.4 Individual Software Vendor (ISV) Example
Example 7. Launching the UMT/pyMPI benchmark using CCM

The UMT/pyMPI benchmark tests MPI and OpenMP parallel scaling efficiency,
thread compiling, single CPU performance, and Python functionality.

The following example runs through the UMT/pyMPI benchmark; it can use
CCM and presupposes that you have installed it in your user scratch directory.
Ther unSud son. py Python script runs the benchmark. The - V option passes
environment variables to the cluster job:

nodul e | oad ccm

gsub -V -q ccmqueue -1 -l nppwi dth=2 -1 nppnodes=471
cd top_of _directory_where_extrated
a="pwd’

export LD LI BRARY_PATH=${a}/ Teton: ${a}/ cng2Kul | / sour ces: ${a}/ CM5_CLEAN src: ${ LD LI BRARY_PATH}
ccnrun -n2 ${a}/Install/pyMPl-2.4b4/ pyMPl python/runSud son. py

The following runs the UMT test contained in the package:

nodul e | oad ccm

gsub -V -q ccm queue -1 -l nppwi dth=2 -1 nppnodes=471
gsub: waiting for job 394846.sdb to start

gsub: job 394846. sdb ready

Initializing CCM environnent, Please Wit

wai ting for jid....

waiting for jid....

CCM Start success, 1 of 1 responses

machi ne=> cd UMI_TEST

machi ne=> a="pwd’

machi ne=> ccnrun -n2 ${a}/Install/pyMl-2.4b4/ pyMPl python/runSud son. py
witing grid file: grid_2 13x13x13.cny

Constructing nesh.

Mesh construction conplete, next building region, opacity, material, etc.
mesh and data setup conplete, building Teton object.

Setup conpl ete, beginning time steps.

CYCLE 1 timerad = 3e-06

Templters = 3 Fluxlters = 3 GTAlters = 0

TrMax = 0. 0031622776601684 in Zone 47 on Node 1

TeMax = 0. 0031622776601684 in Zone 1239 on Node 1

Recomended tine step for next rad cycle = 6e-05

kkkkkkhkkkhx Run TIITB StatlSthS *kkkkkkhkkkhx

Cycl e Advance Accunul at ed
Ti me (sec) Angl e Loop Tinme (sec)
RADTR = 47.432 39. 991999864578

CYCLE 2 tinmerad = 6. 3e-05

The benchmark continues for several iterations before completing.

S-2496-42 63

Workload Management and Application Placement for the Cray Linux Environment™

6.5 Troubleshooting

6.5.1 CCM Initialization Fails

Immediately after the user enters the gsub command line, output appears asin the
following example:

Initializing CCM environnent, Please Wit
Cluster Conpatibility Mbde Start failed, 1 of 4 responses

This error usually results when / et ¢ files(e.g., nsswi t ch. conf,

resol v. conf, passwd, shadow, etc.) are not specialized to the cnos class
view. If you encounter this error, the system administrator must migrate these files
from the | ogi n class view to the cnos class view. For more information, see
Managing System Software for the Cray Linux Environment.

6.5.2 pam j ob. so Is Incompatible with CCM

The pam j ob. so module isincompatible with CCM. This can cause symptoms
such as failed job cleanup and slow login. PAM jobs should be enabled only for
| ogi n classviews, not for the cnos class view.

Procedure 1. Disabling CSA Accounting for the cnos class view

1. Enter xt opvi ew in the default view and edit
/etc/opt/cray/ccm ccm nounts. | ocal inthefollowing manner:

boot: ~ # xtopvi ew

default/:/# vi /etc/opt/cray/ccm ccm nounts. | ocal

/ et ¢/ pam d/ common- sessi on-pc. ccm / et ¢/ pam d/ conmon- session bind 0
defaul t/:/# exit

2. Enter xt opvi ewinthecnos view:

boot: ~ # xtopview -c cnos -x /etc/opt/cray/sdb/node_cl asses

3. Edit/ et ¢/ pam d/ conmon- aut h- pc:

class/cnos:/ # vi [etc/pam d/ common-aut h-pc

and remove or comment the following line:

sessi on optional [opt/cray/jobl/defaul t/lib64/security/pamjob.so

4. Edit/ et c/ pam d/ common- sessi on to include:

sessi on optional pam nkhonedir.so skel =/ sof t war e/ skel

session required pamlimts.so

session required pam uni x2. so

sessi on optional pam.|dap.so

sessi on optional pam umask.s

session optional /opt/cray/job/default/lib64/security/pamjob.so

64 S-2496-42

Using Cluster Compatibility Mode in CLE [6]

5. Edit/ et ¢/ pam d/ common- sessi on- pc. ccmto remove or comment all
of the following:

sessi on optional pam nkhonedir.so skel =/ sof t war e/ skel
session required pamlimts.so

session required pam uni x2. so

sessi on optional pam.|dap.so

6.5.3 PMGR_COLLECTI VE ERROR

When you see the error, "PMGR_COLLECTI VE ERROR: uninitialized
MPI task: M ssing required environment variable:

MPI RUN_RANK," you are likely trying to run an application compiled with a
mismatched version of MPI.

6.5.4 Job Hangs When sa Parameter Is Passed to Platform MPI

The sa parameter is provided by Platform MPI to enable MPI messages to continue
flowing even when an application is consuming CPU time for long periods. Platform
MPI enables atimer that generates signals at regular intervals. The signals interrupt
the application and allow Platform MPI to use some necessary CPU cycles.

MP-MPI and Platform MPI 7.x have a bug that may cause intermittent hangs when
this option is enabled. Thisissue does not exist with Platform MPI 8.0.

6.5.5 "MPI _Init: dl open" Error(s)

The error message, "MPI _I nit: dl open
[opt/platformnpi/lib/linux_and64/plugins/default.so:
undef i ned symnbol " islikely caused by alibrary search path that includes an
MPI implementation which is different from the implementation being used by the
application.

6.5.6 Bus Errors In an Application, MPI, or | i bi bgni

Sometimes bus errors are due to bugs in the application software. However, the Linux
kernel will also generate a bus error if it encounters various errors while handling a
page fault. The most likely of those errorsis running out of RAM or being unable

to alocate a huge page due to memory fragmentation.

6.5.7 gl i bc. so Errors at Start of Application Launch

S-2496-42

This error may occur nearly immediately after submission. In certain applications,
like FLUENT, glibc errors and a stack trace are appear in st der r . This problem
typically involves the license server. Be sure to include aline return at the end of
your ~/ . f | exl nr c file.

65

Workload Management and Application Placement for the Cray Linux Environment™

6.5.8 "orted: command not found"

This message can appear when using an Open MPI build that is not in the default
PATH. To avoid the prablem, using the - - pr ef i X command argument to npi r un
to specify the location of Open MPI.

6.6 Caveats and Limitations for CCM

6.6.1 ALPS Does Not Accurately Reflect CCM Job Resources

Because CCM is transparent to the user application, ALPS utilities such asapst at
do not accurately reflect resources used by a CCM job.

6.6.2 Open MPI and Moab and TORQUE Integration Not Supported

Open MPI provides native Moab and TORQUE integration. However, CCM does not
support this mode or applications that use a shrink-wrapped MPI with this mode.
Checking onpi _i nf o will reveal if it was built with thisintegration. It will look
like the following:

% ompi _info | grep tm

MCA nenory: ptnmalloc2 (MCA v2.0, APl v2.0, Conponent vl.3.3)

MCA ras: tm (MCA v2.0, APl v2.0, Conponent vl.3.3)
MCA plm tm (MCA v2.0, APl v2.0, Conponent vl1.3.3)

You can rebuild Open MPI to disable Moab and TORQUE integration using the
following options to the conf i gur e script:
./configure --enabl e-nta-no-build=plmtmras-tm--disable-npi-f77 \
--di sabl e-npi -f90 \
- - pr ef i x=path_to_install

Which should result inno TM API being displayed by onpi _i nf o:

% ompi _info | grep tm
MCA nenory: ptnalloc2 (MCA v2.0, APl v2.0, Conponent vl.3.3)

66 S-2496-42

Using Cluster Compatibility Mode in CLE [6]

6.6.3 Miscellaneous Limitations

S-2496-42

The following limitations apply to supporting cluster queues with CLE 4.1 on Cray
systems:

Applications must fit in the physical node memory because swap space is not
supported in CCM.

Core specialization is not supported with CCM.

CCM does not support applications that are built in Cray Compiling Environment
(CCE) with Fortran 2008 with coarrays or Unified Paralel C (UPC) compiling
options, nor any Cray built libraries built with these implementations.
Applications built using the Cray SHMEM or Cray MPI libraries are also not
compatible with CCM.

67

Workload Management and Application Placement for the Cray Linux Environment™

68 S-2496-42

Using Checkpoint/Restart [7]

S-2496-42

The checkpoint/restart facility enables you to save job state to a checkpoint file and
restart the job from its latest checkpoint at a future time. Cray checkpoint/restart is
based on Berkeley Lab Checkpoint Restart (BLCR). Moab and TORQUE and PBS
Professional are supported workload management systems. Cray checkpoint/restart
is only supported on Cray XE systems.

Parallel applications must use MPI, SHMEM and/or Open MP; other parallel
programming models are not supported. In general, MPI-2 applications are
supported, but MPI process management is not supported. No changes to application
source code are required to checkpoint and restart a job. For Open MP applications,
you must load cr pr ep module to enable checkpoint/restart functionality.

The workload management systems PBS Professional and Moab and TORQUE
provide these checkpoint/restart commands:

« ghol d, which checkpoints ajob, releases resources assigned to the job, and
places the job in hold state in the job queue.

» gchkpt, which checkpoints ajob, but the job keeps running.

e grl s, which releases a checkpointed job from hold state; the job resumes
running.

* grerun,which restarts a previously checkpointed job that has completed, is still
queued in the completed state, and has not yet exited the workload management
system.

Note: A system variable sets the amount of time ajob can remain in the queue
in the completed state. Once a job has been removed from the queue, you can
no longer use gqr er un to restart it.

See the ghol d(1), gchkpt (1), gr | s(1), and gr er un(1) man pages for details
about these commands.

Note: Use the WMS commands, not native the BLCR commands. The native
BLCR commands are not supported. Also, use the Cray man pages; the BLCR man
pages document some features that are not supported on Cray systems.

To use checkpoint/restart, you must load the workload management system module
(moab or pbs) and the bl cr module. Loading the bl cr module causes subsequent
compilations to link the libraries that make the application checkpointable.

69

Workload Management and Application Placement for the Cray Linux Environment™

70

You should be aware of the following checkpoint/restart usage restrictions:

You cannot checkpoint single (1) rank MPI applications.

You cannot checkpoint/restart applications that are launched interactively through
aprun.

You cannot checkpoint/restart applications that use sockets.

Files are referenced by name only. Only those files open at checkpoint time have
their state saved. At restart time, that state is restored. For example, if afilehas
grown since the checkpoint, it will be truncated at restart time to the size saved at
checkpoint time; the data added to the filewill be lost.

Linux asynchronous I/O is not supported.

Applications that connect st di n, st dout , and st derr toaTTY are not
supported.

Applications being debugged with an interactive debugger are not supported.

Any memory locked at the time of checkpoint will not be locked at restart.
Applications that depend upon locked memory may not function properly after a
checkpoint and restart.

Unix System V shared memory and IPC (interprocess communication) resources
are not supported.

Tasks and threads created after arestart will not have the correct CPU affinity.

Cray performance tools shall provide reasonably accurate performance
information across a checkpoint/restart. Other performance tools may not give
accurate performance information across a checkpoint/restart.

A writable/ t np isrequired for on-node MPI message transfers.

For an example showing how to create, checkpoint, and restart a job, see Using
Checkpoint/Restart Commands on page 107.

S-2496-42

Optimizing Applications [8]

8.1 Using Compiler Optimization Options

S-2496-42

After you have compiled and debugged your code and analyzed its performance, you
can use a humber of technigues to optimize performance. For details about compiler
optimization and optimization reporting options, see the following manuals:

e Cray C and C++ Reference Manual, Cray Fortran Reference Manual
* PGl User's Guide

» Using the GNU Compiler Collection (GCC)

e PathScale Compiler Suite User Guide

e Intel C++ Compiler Professional Edition for Linux

» Intel Fortran Compiler Professional Edition for Linux

Optimization produces code that is more efficient and runs significantly faster than
unoptimized code. Optimization can be performed at the compilation unit level
through compiler driver options or to selected portions of code through the use of
directives or pragmas. Because optimization may increase compilation time and may
make debugging difficult, it is best to use performance analysis data in advance to
isolate the portions of code where optimization would provide the greatest benefits.

You aso can use apr un affinity options to optimize applications.

In the following example, a Fortran matrix multiply subroutine is optimized. The
compiler driver option generates an optimization report.

Source codeof mat ri x_nul ti ply. f90:

subroutine nxm(x,y, z, mn)
real *8 x(mn), y(mn), z(n,n)
do k =1,
do j
do

- e
TR
~ =3

, m

x(i,j) =x(i,j) +y(i,k)*z(k,j)
enddo

enddo

enddo

end

71

Workload Management and Application Placement for the Cray Linux Environment™

PGI Fortran compiler command:

%ftn -c -fast -Mnfo matrix_nultiply.f90
Optimization report:

mxm

5, Interchange produces reordered |loop nest: 7, 5, 9

9, Generated 3 alternate loops for the inner |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop
Gener ated vector sse code for inner |oop
Generated 2 prefetch instructions for this |oop

To generate an optimization report (loopmark listing) by using the Cray Fortran
compiler, enter:

% nodul e swap PrgEnv-pgi PrgEnv-cray
%ftn -ra -c matrix_multiply.f90

72 S-2496-42

Optimizing Applications [8]

Optimization report (filematri x_mul tiply.|st):

%880

s<vz—-moo>»

CoNoTrWNE

ftn-6002
A |l oop

ftn-6002
A |l oop

ftn-6202
A |l oop

Loopmar k

i mry Loop Type

- Pattern matched
- Col | apsed

- Del eted

- Cloned

- Inlined

- Multithreaded

- Parallel/Tasked
- Vectorized

- Unwound

Legend %80

Modi fiers

a - vector atom c nenory operation
b - bl ocked

f - fused

i - interchanged

m - streaned but not partitioned

p - conditional, partial and/or conputed
r - unrolled

s - shortl oop

t - array syntax tenp used

w - unwound

subroutine nxm(x,y, z, mn)
real *8 x(mn), y(mn), z(n,n)

x(i,7) + y(i, k) z(k,j)

D----- < do k =1,
D 2----< doj =
D2 A-< do i
D2 A x(i,j
D2 A-> enddo
D2----> enddo
D----- > enddo

end

ftn: SCALAR File
starting at line

ftn: SCALAR File
starting at line

ftn: VECTOR File
starting at line

=mtrix_multiply.f90, Line = 4
4 was elimnated by optimzation.

=mtrix_multiply.f90, Line =5
5 was elimnated by optimzation.

=mtrix_multiply.f90, Line = 6
6 was replaced by a library call.

8.2 Using apr un Memory Affinity Options

S-2496-42

Each Cray compute node has local-NUMA-node memory and remote-NUMA-node
memory. Remote-NUMA-node memory references, such asa NUMA node 0 PE
accessing NUMA node 1 memory, can adversely affect performance. Cray has added
apr un memory affinity options to give you run time controls that may optimize
memory references.

Applications can use one or al NUMA nodes of a Cray system compute node. If
an application is placed using one NUMA node, other NUMA nodes are not used
and the application processes are restricted to using local-NUMA-node memory.
This memory usage policy is enforced by running the application processes within a
cpuset. A cpuset consists of cores and local memory on a compute node.

73

Workload Management and Application Placement for the Cray Linux Environment™

When an application is placed using all NUMA nodes, the cpuset includes all
node memory and all CPUs. In this case, the application processes allocate
local-NUMA-node memory first. If insufficient free local-NUMA-node memory is
available, the allocation may be satisfied by using remote-NUM A-node memory.
In other words, if there is not enough NUMA node n memory, the allocation may
be satisfied by using NUMA node n+1 memory. An exception isthe - ss (strict
memory containment) option. For this option, memory accesses are restricted

to local-NUMA-node memory even if both NUMA nodes are available to the
application.

The apr un memory affinity options are:

* -S pes per_numa_node

e -sn numa_nodes per_node

e -sl list_of numa nodes

e -sSS

For details, see Using the apr un Command on page 15.

Use these apr un options for each element of an MPMD application and vary them
with each MPMD element as required.

Compute nodes are considered for the application placement if any of the following
conditions is true:

* The-snvaueis2.
* The- sl list has more than one entry.
* The- sl lististhe highest-ordered NUMA node.

e The- Svaueaong with a- Nvalue requires two NUMA nodes (suchas- N 4
-S 2).

Usecnsel ect nuntores. eq. number_of coresto get alist the Cray system
compute nodes.

You canusetheaprun -Lorqgsub -1 nppnodes optionsto specify those lists or
asubset of those lists. For additional information, see the apr un(l), cnsel ect (1),
and gsub(1) man pages.

74 S-2496-42

Optimizing Applications [8]

8.3 Using apr un CPU Affinity Options

CNL can dynamically distribute work by allowing PEs and threads to migrate from
one CPU to another within a node. In some cases, moving processes from CPU

to CPU increases cache misses and translation lookaside buffer (TLB) misses and
therefore reduces performance. Also, there may be cases where an application runs
faster by avoiding or targeting a particular CPU. The apr un CPU affinity options let
you bind a process to a particular CPU or the CPUs on aNUMA node. These options
apply to al Cray multicore compute nodes.

Applications are assigned to acpuset and can run only on the CPUs specified by
the cpuset . Also, applications can allocate memory only on memory defined by the
cpuset . A cpuset can be acompute node (default) or aNUMA node.

The CPU affinity options are:

e -cc cpulist | keyword

e -cp cpu_placement_file_ hame

For details, see Using the apr un Command on page 15.

These apr un options can be used for each element of an MPMD application and can
vary with each MPMD element.

8.4 Exclusive Access

S-2496-42

The - F affinity option for apr un provides a program with exclusive accessto al the
processing and memory resources on a node.

This option assigns all compute node cores and compute node memory to the
application's cpuset . Used with the - cc option, it enables an application
programmer to bind processes to those mentioned in the affinity string.

There are two modes. excl usi ve and shar e. The share mode restricts the
application specificcpuset contents to only the application reserved cores and
memory on NUMA node boundaries. For example, if an application requests and is
assigned cores and memory on NUMA node 0O, then only NUMA node O cores and
memory are contained within the application cpuset . The application cannot access
the cores and memory of the other NUMA nodes on that compute node.

Administrators can modify / et ¢/ al ps. conf to set apolicy for access modes. |If
nodeShar e is not specifiedin thisfile, the default mode remains excl usi ve;
setting to shar e makes the default shar e access mode. Users can override the
system-wide policy by specifying apr un - F excl usi ve at the command line or
within their respective batch scripts. For additional information, see the apr un(2)
man page.

75

Workload Management and Application Placement for the Cray Linux Environment™

8.5 Optimizing Process Placement on Multicore Nodes

76

Multicore systems can run more tasks simultaneously, which increases overall system
performance. The trade-offs are that each core has less local memory (because it

is shared by the cores) and less system interconnection bandwidth (which is also
shared).

Processes are placed in packed rank-sequential order, starting with the first node. For
a 100-core, 50-node job running on dual-core nodes, the layout of ranks on coresis:

Node 1 Node 2 Node 3 Node 50
Core 0 1 0 1 0 1 0 1
Rank 0 1 2 3 4 5 98 99

MPI supports multiple interconnect device driversfor asingle MPI job. Thisallows
each process (rank) of an MPI job to create the most optimal messaging path to
every other process in the job, based on the topology of the given ranks. The SMP
device driver is based on shared memory and is used for communication between
ranks that share a node. The GNI device driver is used for communication between
ranks that span nodes.

To attain the fastest possible run time, try running your program on only one core of
each node. (In this case, the other cores are allocated to your job, but areidle.) This
allows each process to have full access to the system interconnection network.

For example, you could use the commands:

% cnsel ect nuntores.gt.1
20- 175
% aprun -n 64 -N 1 -L 20-175 ./progl

to launch pr og1 on one core of each of 64 multicore nodes.

S-2496-42

Example Applications [9]

This chapter presents examples that show how to compile, link, and run applications.

Verify that your work areaisin a Lustre-mounted directory. Then use the modul e
i st command to verify that the correct modules are loaded. Each following
example lists the modules that have to be loaded.

9.1 Running a Basic Application
This example shows how to compile program si npl e. ¢ and launch the executable.

One of the following modules is required:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-i nt el

Create a C program, si npl e. c:
#i ncl ude "npi . h"

int main(int argc, char *argv[])
{
int rank;
i nt nunprocs;
MPI _I nit(&argc, &rgv);
MPI _Conmm r ank(MPI _COVM WORLD, &r ank) ;
MPI _Comm si ze(MPI _COVM WORLD, &unpr ocs) ;

printf("hello frompe % of %\ n",rank, nunprocs);
MPI _Finali ze();
}

Compile the program:

%cc -o sinple sinple.c

S-2496-42 77

Workload Management and Application Placement for the Cray Linux Environment™

Run the program:

% aprun -n 6 ./sinple

hello frompe 0 of 6
hello frompe 5 of 6
hello frompe 4 of 6
hello frompe 3 of 6
hello frompe 2 of 6
hello frompe 1 of 6
Application 135891 resources: utinme ~0s, stine ~0s

9.2 Running an MPI Application

78

This example shows how to compile, link, and run an MPI program. The MPI
program distributes the work represented in a reduction loop, prints the subtotal for
each PE, combines the results from the PEs, and prints the total.

One of the following modules is required:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv-gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Create a Fortran program, npi . f 90:

program reduce
i nclude "npif.h"

integer n, nres, ierr

call MPI _INIT (ierr)

call MPI _COMM RANK (MPI _COVM WORLD, nype, i err)
call MPI_COW SI ZE (MPI _COVM WORLD, npes, i err)

nres =0
n=2~0

do i =nype, 100, npes

n=n+i
enddo

print *, "My PE', nype, ' My part:',n

call MPI_REDUCE (n,nres, 1, MPl _I NTEGER, MPI _SUM 0, MPI _COMM WORLD, i err)
if (nype == 0) print *,' PE:.', nype, ' Total is:',nres

call MPI_FINALIZE (ierr)

end

Compile mpi . f 90:

% ftn -o nmpi npi.f9o0

S-2496-42

Example Applications [9]

Run program npi :

% aprun -n 6 ./npi | sort

PE: 0 Total is: 5050
My PE: 0 M part: 816
My PE: 1 M part: 833
My PE: 2 M part: 850
My PE: 3 M part: 867
My PE: 4 M part: 884
My PE: 5 M part: 800

Application 3016865 resources: utinme ~0s, stine ~0s

If desired, you could use this C version of the program:

/* program reduce */

#i ncl ude <stdio. h>
#i ncl ude "npi . h"

int main (int argc, char *argv[])

{
int i, sum nype, npes, nres, ret;
ret = MPl_Init (&argc, &argv);
ret = MPI_Comm size (MPI_COW WORLD, &npes);
ret = MPI_Comm rank (MPI_COW WORLD, &nype);
nres = 0O;
sum = 0O;

for (i = nype; i <=100; i += npes) {
sum = sum + i;

}

(void) printf ("My PEE% M part: %\ n", nype, sum;
ret = MPI _Reduce (&sum &nres, 1, MPl _| NTEGER, MPI _SUM 0, MPI _COVM WORLD) ;

if (nype == 0)
{
(void) printf ("PE: %l Total is:%l\n",nype, nres);
}
ret = MI_Finalize ();

9.3 Using the Cray shnem put Function

This example shows how to use the shrem put 64() function to copy a contiguous
data object from the local PE to a contiguous data object on a different PE.

S-2496-42

One of the following modules is required:

PrgEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

79

Workload Management and Application Placement for the Cray Linux Environment™

Source code of C program (shnem put . ¢):

/*
* sinple put test
*/

#i ncl ude <stdi o. h>
#i nclude <stdlib. h>
#i ncl ude <npp/ shnem h>

/* Dinension of source and target of put operations */
#define DM 1000000

long target[DIM;
long local [DIM;

mai n(i nt argc, char **argv)
{

register int i;

int ny_partner, ny_pe;

/* Prepare resources required for correct functionality
of SHVEM on XT. Alternatively, shnem.init() could
be called. */

start_pes(0);

for (i=0; i<DIM i++) {

target[i] = OL;

local[i] = shmem.nmy_pe() + (i * 10);
}

ny_pe = shmem.ny_pe();

i f(shmem n_pes() %) ({
if(ny_pe == 0) printf("Test needs even nunber of processes\n");
/* Clean up resources before exit. */
shmem finalize();
exit(0);
}

shmem barrier_all();

/* Test has to be run on two procs. */
my_partner = ny_pe %2 ? nmy_pe - 1 : ny_pe + 1;

shnem put 64(target, | ocal,D Mny_partner);

/* Synchroni ze before verifying results. */
shnmem barrier_all();

/* Check results of put */
for(i=0; i<DIM i++) {
if(target[i] != (ny_partner + (i * 10))) {
fprintf(stderr,"FAIL (1) on PE % target[%l] = % (%)\n",

shmem ny_pe(), i, target[i], ny_partner+(i*10));
shnmem finalize();
exit(-1);

}

80 S-2496-42

Example Applications [9]

}

printf("

PE %l: Test

passed.\n", ny_pe);

/* Clean up resources. */

shmem finalize();

}

Compileshnem _put . ¢ and create executable shnmem put :

% cc -0 shnem put shmem put.c

Run shnmem put :

% aprun -n 12 -L 56 ./shmem put

PE 5. Test
PE 6: Test
PE 3: Test
PE 1. Test
PE 4: Test
PE 2: Test
PE 7: Test
PE 11: Test
PE 10: Test
PE 9: Test
PE 8: Test
PE 0: Test
Application
Application

passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.
passed.

57916 exit

codes: 255

57916 resources: utinme ~1s, stine ~2s

9.4 Using the Cray shnem get Function

S-2496-42

This example shows how to use the shmrem _get () function to copy a contiguous
data object from a different PE to a contiguous data object on the local PE.

One of the following modules is required:

Pr gEnv- pgi

PrgEnv-cray
Pr gEnv- gnu
Pr gEnv- pat hscal e

PrgEnv-inte

Thecr ay- shmemmoduleis aso required.

Note: The Fortran module for Cray SHMEM is not supported. Use the | NCLUDE
" mpp/ shmem f h' statement instead.

81

Workload Management and Application Placement for the Cray Linux Environment™

9.5 Running Partitioned Global Address Space (PGAS)

Applications

82

Source code of Fortran program (shnem get . f 90):

program reduction

i ncl ude ' mpp/ shmem f h'

real val ues, sum
comon /c/ val ues

real work

call start_pes(0)

val ues=ny_pe()

call shmembarrier_all!

sum= 0.0

doi = 0,numpes()-1
call shmem get (work, val ues,
I Sumit

sum = sum + wor k

enddo

print*, 'PE ,nmy_pe(),"’

call shmembarrier_all
call shmem finalize

end

1, i)

Synchroni ze all PEs

I Get next value

conput edsun¥' , sum

Compileshnmem get . f 90 and create executable shnmem get :

% ftn -o shmem get shnem get.f90

Run shnen®:

% aprun -n 6 ./shnmem get

PE
PE
PE
PE
PE
PE

N WhHUlO

[EEY

conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥

Application 137031 resources:

15.
15.
15.
15.
15.
15.

00000
00000
00000
00000
00000
00000

utinme ~0s, stine ~0s

To run Unified Parallel C (UPC) or Fortran 2008 coarrays applications, use the Cray
C compiler. These are not supported for PGI, GCC, PathScale, or Intel C compilers.

This example shows how to compile and run a Cray C program that includes Unified
Parallel C (UPC) functions.

S-2496-42

Example Applications [9]

Modules required:

Pr gEnv-cray

Check that these additional modules are loaded. These are part of the default modules
on the login node loaded with the module Base- opt s, but you will encounter an
error with PGA'S applications with these modules unloaded:

udr eg
ugni
dmapp

9.5.1 Running a Unified Parallel C (UPC) Application

S-2496-42

The following is the source code of program upc_cr ay. c:

#i ncl ude <upc. h>
#i ncl ude <stdio. h>
int main (int argc, char *argv[])
{ . .
int i;
for (i =0; i < THREADS; ++i)
{
upc_barrier;
if (i == MYTHREAD)
printf ("Hello world fromthread: %\ n", MTHREAD);
}

return O;

}

Compileupc_cray. ¢ and run executablecr ay_upc:

% cc -h upc -0 upc_cray upc_cray.c

% aprun -n 2 ./upc_cray

Hello world fromthread: O

Hello world fromthread: 1

Application 251523 resources: utinme ~0s, stine ~0s

Note: You need toincludethe- h upc option on the cc command line.

83

Workload Management and Application Placement for the Cray Linux Environment™

9.5.2 Running a Fortran 2008 Application Using Coarrays

The following is the source code of program si npl e_caf . f 90:

program si npl e_caf
implicit none

i nteger :: npes, nype,

real :: local _array(1000),tota
real 11 coarray[*]

nmype this_i mage()

npes num_i mages()

if (npes < 2) then
print *, "Need at least 2 images to run"

stop
end if
do i =1, 1000
| ocal _array(i) = sin(real (nype*i))
end do

coarray = sumn(local _array)
sync al

if (nype == 1) then
total = coarray + coarray[2]

print *, "Total frominmages 1 and 2 is ",tota
end if

end program si npl e_caf

Compilesi npl e_caf . f 90 and run the executable:

% ftn -hcaf -o sinple_caf sinple_caf.f90
[opt/cray/xt-asyncpe/3.9.39/bin/ftn: INFG |inux target is being used
% aprun -n2 sinpl e_caf

Total frominmages 1 and 2 is 1.71800661

Application 39512 resources: utine ~0s, stine ~0s

9.6 Running an Acclerated Cray LibSci Routine

84

The following sample program displays usage of thel i bsci _acc accelerated
libraries to perform LAPACK routines. The program solves a linear system of
equations (AX = B) by computing the LU factorization of matrix A in DGETRF and
completing the solution in DGETRS. For more information on auto-tuned LibSci GPU
routines, seethei ntro_li bsci _acc(3s) man page.

Modules required:

PrgEnv-cray
craype-accel - nvi di a35
cray-|libsci

S-2496-42

Example Applications [9]

S-2496-42

Source of the program

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <mat h. h>

#i ncl ude <libsci_acc. h>

int min (int argc, char **argv) {
double *A, *B; int *ipiv;
int n, nrhs, lda, |db, info;
int i, j;

n =1I1da =1db = 5;

nrhs = 1;

ipiv = (int *)nmalloc(sizeof (int)*n);

B = (doubl e *)mal | oc(sizeof (doubl e) *n*nrhs);

libsci_acc_init();
l'ibsci_acc_HostAlloc((void **)&A, sizeof(double)*n*n);

for (i =0; i <n; i++) {
for (j =0; j <n j++) {
Ali*lda+j] = drand48();

}

}

for (i =0; i <nrhs; i++) {

for (j =0; j <n; j++) {
B[i *I db+j] = drand48();

}
}
printf("\n\nMatrix An");
for (i =0; i <n ; i++) {
if (i >0

printf("\n");

for (j =0; j <n; j++) {
printf("\t%", Ali*lda+j]);

}
}
printf("\n\nRHS/ B\n");
for (i=0; i < nrhs; i++) {
if (i >0)
printf("\n");
for (J =0;) <n; j++) {
if (i==0)
printf("| %\n",Bli*ldb+j]);
el se
printf(" %\n",Bli*ldb+j]);
}
}

printf("\n\nSolution/X\n");
dgetrf(n, n, A lda, ipiv, & nfo);
dgetrs('N, n, nrhs, A lda, ipiv, B, Idb, & nfo);

85

Workload Management and Application Placement for the Cray Linux Environment™

for (i =0; i <nrhs; i++) {
printf("\n");

for (j =0;) <n; j++) {
printf("%\n",B[i*Idb+]);
}

}
printf("\n");

libsci _acc_FreeHost (A);
free(ipiv);

free(B);
libsci_acc_finalize();

}

% aprun -nl ./a.out

Matrix A

0. 000000 0.000985 0.041631 0.176643 0.364602
0. 091331 0.092298 0.487217 0.526750 0.454433
0.233178 0.831292 0.931731 0.568060 0.556094
0.050832 0.767051 0.018915 0.252360 0.298197
0. 875981 0.531557 0.920261 0.515431 0.810429

| 0.188420
| 0.886314
| 0.570614
| 0.076775
| 0.815274

Sol ution/ X

3. 105866
-2.649034
1. 836310
-0.543425
0. 034012

9.7 Running a PETSc Application

86

This example (Copyright 1995-2004 University of Chicago) shows how to use PETSc
functions to solve alinear system of partial differential equations.

Note: There are many ways to use the PETSc solvers. This exampleisintended to
show the basics of compiling and running a PETSc program on a Cray system. It
presents one simple approach and may not be the best template to use in writing
user code. For issuesthat are not specific to Cray systems, you can get technical

support through pet sc- user s@rcs. anl . gov.

The source code for this example includes a comment about the use of the
npi exec command to launch the executable. Use apr un instead.

Example Applications [9]

Modules required:

pet sc

and one of the following:

PrgEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Source code of program ex2f . F:

Description: Solves a linear systemin parallel with KSP (Fortran code).
Al so shows how to set a user-defined nonitoring routine.

|
!
!
i
I Program usage: npiexec -np ex2f [-help] [all PETSc options]
|

/5T

I Concepts: KSP*basic parallel exanple

I Concepts: KSP"setting a user-defined nonitoring routine

! Processors: n

LT/

|

program nain
inmplicit none

Thi s program uses CPP for preprocessing, as indicated by the use of
PETSc include files in the directory petsc/include/finclude. This
convention enabl es use of the CPP preprocessor, which allows the use
of the #include statenents that define PETSc objects and vari abl es.

Use of the conventional Fortran include statements is al so supported
In this case, the PETsc include files are located in the directory
pet sc/ i ncl ude/ f ol di ncl ude.

Si nce one nust be very careful to include each file no nore than once
ina Fortran routine, application programers nust exlicitly |ist
each file needed for the various PETSc conponents within their
program (unli ke the C/ C++ interface).

See the Fortran section of the PETSc users manual for details.

The followi ng include statenents are required for KSP Fortran prograns:

petsc. h - base PETSc routines

petscvec. h - vectors

petscrat. h - matrices

petscpc. h - preconditioners

pet scksp. h - Kryl ov subspace net hods
Include the following to use PETSc random nunbers:

petscsys. h - systemroutines

Addi tional include statenents nmay be needed if using additional

S-2496-42 87

Workload Management and Application Placement for the Cray Linux Environment™

PETSc routines in a Fortran program e.g.,
petscviewer.h - viewers
petscis. h - index sets

#i ncl ude "fincl ude/ petsc.h"

#i ncl ude "fincl ude/ pet scvec. h"
#i ncl ude "fincl ude/ petscmat. h"
#i ncl ude "fincl ude/ pet scpc. h"
#i ncl ude "fincl ude/ pet scksp. h"
#i ncl ude "fincl ude/ petscsys. h"

Vari abl es:
ksp - linear solver context
ksp - Kryl ov subspace nethod cont ext
pc - precondi tioner context
X, b, u - approx solution, right-hand-side, exact solution vectors
its - iterations for convergence
norm - normof error in solution
rctx - random nunber generator context

|
|
|
|
|
|
|
|
|
1
! A - matrix that defines linear system
|
|
|
|
I Note that vectors are declared as PETSc "Vec" objects. These vectors
I are mathematical objects that contain nore than just an array of
! double precision nunbers. |.e., vectors in PETSc are not just
! doubl e precision x(*).
! However, local vector data can be easily accessed via VecGetArray().
I See the Fortran section of the PETSc users nanual for details.
|
doubl e precision norm
Petsclnt i,j,I11,JJ,mn,its
Petsclnt |Istart,lend,ione
Pet scError Code ierr

88

Pet scMPI | nt

Pet scTrut h

rank, si ze
flg

Pet scScal ar v, one, neg_one

Vec X, b, u
Mat A
KSP ksp

Pet scRandom r ct x

These variables are not currently used.

PC
PCType

pc
ptype

doubl e precision tol

Not e: Any user-defined Fortran routines (such as MyKSPMonitor)
MJUST be decl ared as external.

external MyKSPMboni t or, MyKSPConver ged

Example Applications [9]

call Petsclnitialize(PETSC NULL_CHARACTER, i err)

m= 3

n =3

one =1.0

neg_one = -1.0

i one =1

call PetscOptionsCGetlnt(PETSC NULL_CHARACTER,'-m ,mflg,ierr)
call PetscOptionsCGetlnt(PETSC NULL_CHARACTER, '-n',n,flg,ierr)
call MPI _Comm rank(PETSC_COWM WORLD, rank, i err)

call MPI_Conm si ze(PETSC_COVM WORLD, si ze,ierr)

Conpute the matrix and right-hand-side vector that define
the linear system Ax = b.

Create parallel matrix, specifying only its global dinensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determ ned by PETSc at runtime.

cal |l Mat Creat e(PETSC_COVM WORLD, A, i err)
cal |l Mat Set Si zes(A, PETSC_DECI DE, PETSC_DECI DE, ntn, n¥n,ierr)
cal | Mat Set FronOptions(A ierr)

I Currently, all PETSc parallel matrix formats are partitioned by
I contiguous chunks of rows across the processors. Determnmine which
' rows of the matrix are |ocally owned.

cal | Mat Get Omner shi pRange(A, Istart,lend,ierr)

Set matrix elenments for the 2-D, five-point stencil in parallel.
- Each processor needs to insert only elenents that it owns
locally (but any non-local elenents will be sent to the

appropriate processor during matrix assenbly).

- Always specify global row and colums of matrix entries.

- Note that MatSetVal ues() uses 0-based row and col um nunbers
in Fortran as well as in C

Note: this uses the | ess conmmon natural ordering that orders first

all the unknowns for x = h then for x = 2h etc; Hence you see JH= 11 +- n
instead of JJ = Il + mas you mght expect. The nore standard ordering
would first do all variables for y = h, theny = 2h etc.

do 10, ll=lstart,lend-1
v =-1.0
i =11/n
j =11 - i*n
if (i.gt.0) then
JJ =11 - n
call WMat SetVal ues(A,ione,I1,ione,JJ,v,| NSERT_VALUES, ierr)
endi f
if (i.lt.m1) then
JJ =11 +n
call WMat SetVal ues(A,ione,I1,ione,JJ,v,| NSERT_VALUES, ierr)
endi f

if (j.gt.0) then

S-2496-42 89

Workload Management and Application Placement for the Cray Linux Environment™

JJ =11 -1

call WMat SetVal ues(A,ione,I1l,ione,JJ,v,| NSERT_VALUES, ierr)
endi f
if (j.It.n-1) then

JJ =11 +1

call WMat SetVal ues(A,ione,I1,ione,JJ,v,| NSERT_VALUES, ierr)
endi f
v = 4.0
cal | Mat Set Val ues(A,ione, I l,ione, I1,v, | NSERT_VALUES, ierr)

10 conti nue

Assenbl e matrix, using the 2-step process:

Mat Assenbl yBegi n(), Mat Assenbl yEnd()
Conput ati ons can be done while nessages are in transition,
by pl aci ng code between these two statenents.

cal | Mat Assenbl yBegi n(A, MAT_FI NAL_ASSEMBLY, i err)
cal |l Mat Assenbl yEnd(A, MAT_FI NAL_ASSEMBLY, i err)

Create parallel vectors.
PETSc at runtinme. W could also specify the |ocal dinensions
if desired -- or use the nore general routine VecCreate().

- Wen solving a linear system the vectors and nmatrices MJST
be partitioned accordingly. PETSc automatically generates

and VecCreate() are used with the sanme communi cator.

call VecCreat eMPl (PETSC_COVM WORLD, PETSC_DECI DE, ntn, u,ierr)
call VecSet FronOptions(u,ierr)

call VecDuplicate(u,b,ierr)

call VecDuplicate(b,x,ierr)

Set exact solution; then conpute right-hand-side vector.

By default we use an exact solution of a vector with all
elenents of 1.0; Alternatively, using the runtinme option
-random sol fornms a solution vector with random conponents.

call PetscOpti onsHasNane(PETSC _NULL_CHARACTER,
& "-random exact _sol",flg,ierr)

if (flg .eq. 1) then
call PetscRandonCreat e(PETSC_COVMM WORLD, rctx, ierr)
call PetscRandonSet FronOptions(rctx,ierr)
call VecSet Randon(u, rctx,ierr)
call PetscRandonmDestroy(rctx,ierr)

el se
call VecSet(u,one,ierr)

endi f

call MatMult (A u,b,ierr)

I View the exact solution vector if desired

call PetscOpti onsHasNane(PETSC _NULL_CHARACTER,
& "-view exact_sol",flg,ierr)
if (flg .eq. 1) then
call VecVi emu, PETSC VI EWER_STDOUT_WORLD, i err)
endi f

90

- Here, the parallel partitioning of the vector is determ ned by

appropriately partitioned matrices and vectors when Mat Create()

- Note: We form1 vector fromscratch and then duplicate as needed.

S-2496-42

Example Applications [9]

Create |linear solver context

cal | KSPCreat e(PETSC_COV WORLD, ksp, i err)

Set operators. Here the matrix that defines the linear

al so serves as the preconditioning matri x.

cal | KSPSet Oper at or s(ksp, A, A, DI FFERENT_NONZERO _PATTERN, i err)

Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts fromthe KSP context,
we can then directly directly call any KSP and PC routines

to set various options.
- The following four statenents are optional; all

paranmeters could alternatively be specified at runtine via
KSPSet FromOptions(). Al of these defaults can be

overridden at runtine, as indicated bel ow.

We comment out this section of code since the Jacobi

preconditioner is not a good general default.

cal |l KSPGet PC(ksp, pc,ierr)
ptype = PCIACOBI

cal |l PCSet Type(pc, ptype,ierr)
tol = 1.e-7

call KSPSet Tol er ances(ksp, tol , PETSC_DEFAULT_DOUBLE_PRECI SI ON,
& PETSC_DEFAULT_DOUBLE_PRECI SI ON, PETSC _DEFAULT_| NTEGER, i err)

Set user-defined nmonitoring routine if desired

call PetscOpti onsHasNane(PETSC NULL_CHARACTER, ' -my_ksp_nonitor',

& flg,ierr)
if (flg .eq. 1) then

cal | KSPMoni t or Set (ksp, MyKSPMoni t or, PETSC_NULL_OBJECT,

& PETSC_NULL_FUNCTI ON, i err)
endi f

Set runtinme options, e.g.,

-ksp_type <type> -pc_type <type> -ksp_nonitor -ksp_rtol
These options will override those specified above as |ong as
KSPSet FronOptions() is called _after_ any other custom zation

routines.
cal | KSPSet FronOpti ons(ksp,ierr)
Set convergence test routine if desired

call PetscOpti onsHasNane(PETSC _NULL_CHARACTER,
& '-ny_ksp_convergence' ,flg,ierr)
if (flg .eq. 1) then
cal | KSPSet Conver genceTest (ksp, MyKSPConver ged,
& PETSC_NULL_OBJECT, i err)
endi f

S-2496-42

&

91

Workload Management and Application Placement for the Cray Linux Environment™

call KSPSol ve(ksp, b, x,ierr)

I Check the error

cal | VecAXPY(x, neg_one, u,ierr)
call VecNorn(x, NORM 2, normierr)
cal |l KSPGetlterationNunber(ksp,its,ierr)
if (rank .eq. 0) then
if (norm.gt. 1.e-12) then
wite(6,100) normits

el se
wite(6,110) its
endi f
endi f
100 format (' Norm of error ',e10.4,' iterations ',i5)
110 format (' Normof error < 1l.e-12,iterations ',i5)

! Free work space. All PETSc objects should be destroyed when they
I are no | onger needed.

cal | KSPDestroy(ksp,ierr)
call VecDestroy(u,ierr)
call VecDestroy(x,ierr)
call VecDestroy(b,ierr)
call MatDestroy(A ierr)

Al ways call PetscFinalize() before exiting a program This routine
- finalizes the PETSc libraries as well as MPI
- provides summary and di agnostic information if certain runtine
options are chosen (e.g., -log_sumuary). See PetscFinalize()
manpage for nore information.

call PetscFinalize(ierr)
end

MyKSPMonitor - This is a user-defined routine for nonitoring
the KSP iterative sol vers.

I nput Paraneters:
ksp - iterative context
n - iteration nunber
rnorm- 2-norm (preconditioned) residual value (nmay be esti nmated)
dummy - optional user-defined nonitor context (unused here)

subrouti ne MyKSPMoni t or (ksp, n, rnorm dunmy, i err)

92 S-2496-42

Example Applications [9]

inmplicit none

#i ncl ude "fincl ude/ petsc.h"
#i ncl ude "fincl ude/ petscvec. h"
#i ncl ude "fincl ude/ pet scksp. h"

KSP ksp
Vec X

Pet scError Code ierr

Pet scl nt n, dunmy

Pet scMPI | nt rank

doubl e precision rnorm

I Build the solution vector

cal | KSPBui | dSol uti on(ksp, PETSC_NULL_OBJECT, x, i err)

Wite the solution vector and residual normto stdout
- Note that the parallel viewer PETSC VI EWER _STDOUT_WORLD
handl es data frommultiple processors so that the
output is not junbled.

call MPI _Conm rank(PETSC_COVMM WORLD, rank, i err)
if (rank .eq. 0) wite(6,100) n

call VecVi ew(x, PETSC_VI EWER_STDOUT_WORLD, i err)
if (rank .eq. 0) wite(6,200) n,rnorm

100 format('iteration ',i5,"' solution vector:')
200 format('iteration ',i5," residual norm', el0.4)
ierr =0
end

MyKSPConverged - This is a user-defined routine for testing
convergence of the KSP iterative sol vers.

| nput Paraneters:
ksp - iterative context
n - iteration nunber
rnorm- 2-norm (preconditioned) residual value (may be estinmated)
dumy - optional user-defined nonitor context (unused here)

subrouti ne MyKSPConver ged(ksp, n,rnorm fl ag, dunmy,ierr)
inmplicit none

#i ncl ude "fincl ude/ petsc.h"
#i ncl ude "fincl ude/ petscvec. h"
#i ncl ude "fincl ude/ pet scksp. h"

KSP ksp
Pet scError Code ierr

Pet scl nt n, dunmmy
KSPConver gedReason fl ag
doubl e precision rnorm

if (rnorm.le. .05) then

S-2496-42

93

Workload Management and Application Placement for the Cray Linux Environment™

1
[En

flag
el se
flag
endi f
ierr =0

1
o

end

Use the following makefi | e. F:

.SUFFI XES: .nmod .o .F
Conmpilers, linkers and fl ags.

FC = ftn
LI NKER = ftn
FCFLAGS =

LI NKLAGS =

Fortran optim zation options.
FOPTFLAGS = -

. F.o:
$(FC) -c ${FOPTFLAGS} ${FCFLAGS} $*.F

all : ex2f
ex2f : ex2f.o
$(LINKER) -0 $@ex2f.0

Create and run executable ex 2f , including the PETSc run time option - mat _vi ew
to display the nonzero values of the 9x9 matrix A:

% make -f nmakefile.F

% aprun -n 2 ./ex2f -mat_view

row 0: (0, 4) (1, -1) (3, -1)

row 1: (0, -1) (1, 4) (2, -1) (4, -1)
row 2: (1, -1) (2, 4) (5, -1)

row (0, -1) (3, 4) (4, -1) (6, -1)

row (1, -1) (3, -1) (4, 4 (5 -1) (7, -1)
row (2, -1) (4, -1) (5, 4 (8, -1)

r ow (3, -1) (6, 4 (7, -1)

row (4, -1) (6, -1) (7, 4 (8, -1)

3
4
5
6
7.
row 8: (5, -1) (7, -1) (8, 4)
0: (0, 0.25) (3, -1)
1. (1, 0.25) (2, -1)
2: (1, -0.25) (2, 0.266667) (3, -1)
3: (0, -0.25) (2, -0.266667) (3, 0.287081)
0: (0, 0.25) (1, -1) (3, -1)
1: (0, -0.25) (1, 0.266667) (2, -1) (4, -1)
row 2: (1, -0.266667) (2, 0.267857)
row 3: (0, -0.25) (3, 0.266667) (4, -1)
row 4: (1, -0.266667) (3, -0.266667) (4, 0.288462)
Norm of error < 1l.e-12,iterations 7

Application 155514 resources: utime 0, stinme 12

94 S-2496-42

Example Applications [9]

9.8 Running an OpenMP Application

#define _

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

GNU_SOURCE

<stdi 0. h>
<uni std. h>
<string. h>
<sched. h>
<npi . h>
<onp. h>

This example shows how to compile and run an OpenMP/MPI application.

One of the following modules is required:

Pr gEnv-cray
Pr gEnv- pgi
Pr gEnv-gnu

Pr gEnv- pat hscal e

PrgEnv-inte

Note: To compile an OpenMP program using a PGl or PathScale compiler,
include - np on the compiler driver command line. For a GCC compiler, include
- f opennp. For in Intel compiler, include - opennp. No option is required for
the Cray compilers; - h onp isthe default.

For a PathScale OpenMP program, set the PSC_OVP_AFFI NI TY environment
variable to FALSE.

Source code of C program xt hi . c:

/[* Borrowed fromutil-Iinux-2.13-pre7/schedutils/taskset.c */

static char *cpuset_to_cstr(cpu_set_t *mask,

{

char *ptr = str;

int i, j, entry_made =0
for (i =0; i < CPU_SETSIZE; i++) {
if (CPU_ISSET(i, mask)) {
int run =0
entry_made = 1;
for (j =i + 1; j < CPU_SETSIZE; | ++)

}
if (!'run)
sprintf(ptr, "%,", i);
else if (run == 1) {
sprintf(ptr, "%, %,", i,
i ++;
} else {
sprintf(ptr, "%-%,", i,

}

+= run;

while (*ptr !'= 0) ptr++

}
}

ptr -= entry_nade

S-2496-42

if (CPU_ISSET(j, mask)) run++
el se break;

+ 1);

+ run)

char *str)

95

Workload Management and Application Placement for the Cray Linux Environment™

*ptr = 0;
return(str);

}

int main(int argc, char *argv[])
{
int rank, thread;
cpu_set _t corenask;
char clbuf[7 * CPU_SETSI ZE], hnbuf[64];

MPl _Init(&argc, &argv);
MPI _Comm r ank(MPI _COVM WORLD, &rank);
menset (cl buf, 0, sizeof(clbuf));
menset (hnbuf, 0, sizeof (hnbuf));
(voi d) get host nane(hnbuf, si zeof (hnbuf));
#pragma onp parallel private(thread, corenask, clbuf)
{
thread = onp_get _t hread_num();
(void)sched_getaffinity(0, sizeof(corenask), &corenask);
cpuset _to_cstr(&coremask, clbuf);
#pragma onp barrier
printf("Hello fromrank %, thread %, on %. (core affinity =
rank, thread, hnbuf, clbuf);
}
MPI _Finalize();
return(0);

Load the Pr gEnv- pat hscal e module:

% nodul e swap PrgEnv-pgi PrgEnv-pathscal e

Set the PSC_OVP_AFFI NI TY environment variable to FALSE:

% set env PSC_OVP_AFFI NI TY FALSE

Or
% export PSC_OMP_AFFI NI TY=FALSE

Compile and link xt hi . c:

%cc -np -0 xthi xthi.c

%)\ n",

Set the OpenM P environment variable equal to the number of threads in the team:

% set env. OVP_NUM THREADS 2

Or

% export OVP_NUM THREADS=2

Note: If you are running Intel-compiled code, you must use one of the alternate

methods when setting OVP_NUM_THREADS:
e Increasetheapr un - d depth value by one.

e Usetheaprun-cc nuna_node affinity option.

96

S-2496-42

Example Applications [9]

S-2496-42

Run program xt hi :

% export OVP_NUM THREADS=24
% aprun -n 1 -d 24 -L 56 xth
Appl i cation 57937 resources:
Hello fromrank O, thread O,

Hello fromrank 0, thread 10
Hello fromrank 0, thread 11
Hello fromrank 0, thread 12
Hello fromrank 0, thread 13
Hello fromrank 0, thread 14
Hello fromrank 0, thread 15
Hello fromrank 0, thread 16
Hello fromrank 0, thread 17
Hello fromrank 0, thread 18
Hello fromrank 0, thread 19
Hello fromrank O, thread 1,
Hello fromrank 0, thread 20
Hello fromrank 0, thread 21
Hello fromrank 0, thread 22
Hello fromrank 0, thread 23
Hello fromrank 0, thread 2,
Hello fromrank 0, thread 3,
Hello fromrank 0, thread 4,
Hello fromrank O, thread 5,
Hello fromrank 0, thread 6,
Hello fromrank 0, thread 7,
Hello fromrank O, thread 8,
Hello fromrank 0, thread 9

The apr un command created one instance of xt hi , which spawned 23 additional

threads running on separate cores.

uti
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

sort

me ~1s, stinme ~0s
(core affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
affinity
(core affinity

(core affinity

(core affinity

(core affinity

(core affinity

ni d00056

ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056

ni d00056

ni d00056
ni d00056
ni d00056
ni d00056

ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056
ni d00056

(core
(core
(core
(core
(core
(core
(core
(core
(core
(core

(core
(core
(core
(core
(core
(core
(core
(core

affi
af fi
af fi
affi
af fi
af fi
affi
af fi

nity
nity
nity
nity
nity
nity
nity
nity

0)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)

1)
20)
21)
22)
23)

2)

3)

4)

5)

6)

7)

8)

9)

97

Workload Management and Application Placement for the Cray Linux Environment™

Here is another run of xt hi :

% export OVP_NUM THREADS=6
% aprun -n 4 -d 6 -L 56 xthi | sort

Application 57948 resources: utine ~1s, stine ~1s

Hello fromrank 0, thread 0, on ni dO0056. (core
Hello fromrank 0, thread 1, on ni dO0056. (core
Hello fromrank 0, thread 2, on ni d0O0056. (core
Hello fromrank 0, thread 3, on ni d0O0056. (core
Hello fromrank 0, thread 4, on ni dO0056. (core
Hello fromrank 0, thread 5, on ni d00056. (core
Hello fromrank 1, thread 0, on ni d0O0056. (core
Hello fromrank 1, thread 1, on ni dO0056. (core
Hello fromrank 1, thread 2, on ni d0O0056. (core
Hello fromrank 1, thread 3, on ni d0O0056. (core
Hello fromrank 1, thread 4, on ni dO0056. (core
Hello fromrank 1, thread 5, on ni d0O0056. (core
Hello fromrank 2, thread 0, on ni d0O0056. (core
Hello fromrank 2, thread 1, on ni dO0056. (core
Hello fromrank 2, thread 2, on ni d0O0056. (core
Hello fromrank 2, thread 3, on ni d0O0056. (core
Hello fromrank 2, thread 4, on ni dO0056. (core
Hello fromrank 2, thread 5, on ni d0O0056. (core
Hello fromrank 3, thread 0, on ni d0O0056. (core
Hello fromrank 3, thread 1, on ni dO0056. (core
Hello fromrank 3, thread 2, on ni d0O0056. (core
Hello fromrank 3, thread 3, on ni d0O0056. (core
Hello fromrank 3, thread 4, on ni dO0056. (core
Hello fromrank 3, thread 5, on ni d0O0056. (core

af fi
af fi
af fi
af fi
af fi
af fi
affi
af fi
af fi
affi
af fi
af fi
af fi
af fi
af fi
af fi
af fi
af fi
af fi
af fi
af fi
af fi
af fi
af fi

nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity

0)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)

Theapr un command created four instances of xt hi which spawned five additional
threads per instance. All PEs are running on separate cores and each instanceis

confined to NUMA node domains on one compute node.

9.9 Running an Interactive Batch Job

98

This example shows how to compile and run an OpenMP/MPI application (see
Running an OpenMP Application on page 95) on 16-core Cray X6 compute nodes

using an interactive batch job.

Modules required:

pbs or npab

and one of the following:

PrgEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-inte

Usethecnsel ect command to get alist of eight-core, dual-socket compute nodes:

% cnsel ect coremask. eq. 65535
14-17,128- 223, 256- 351, 384- 479, 512- 607, 640- 715

S-2496-42

Example Applications [9]

9.10 Running

S-2496-42

Initiate an interactive batch session:

% qsub -1 -1

Set the OpenM P environment variable equal to the number of threads in the team:

% set env. OMP_NUM THREADS 4

Or

% export OMP_NUM THREADS=4
Run program onp:

% aprun -n 8 -d 4 -L14-15 ./xth

mppwi dt h=8 -1

nmppdept h=4 -1

Appl i cation 57953 resources:

Hell o from
Hello from
Hell o from
Hell o from
Hello from
Hell o from
Hell o from
Hello from
Hell o from
Hell o from
Hello from
Hell o from
Hello from
Hello from
Hell o from
Hello from
Hello from
Hell o from
Hello from
Hello from
Hell o from
Hello from
Hello from
Hell o from
Hello from
Hello from
Hell o from
Hello from
Hello from
Hell o from
Hello from
Hello from

a Batch Job Script

In this example, a batch job script requests six PES to run program npi .

r ank
rank
r ank
r ank
rank
r ank
r ank
rank
r ank
r ank
rank
r ank
rank
rank
r ank
rank
rank
r ank
rank
rank
r ank
rank
rank
r ank
rank
rank
r ank
rank
rank
r ank
rank
rank

NN~N~NoocoouvuuuahrrbDbOWOWNNMNNMNMNNRPRPRPRPPRPOOOO

t hread
t hr ead
t hread
t hread
t hr ead
t hread
t hread
t hr ead
t hread
t hread
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead
t hread
t hr ead
t hr ead

WNPFPOWNRPOWNRPOWNRPOWNRPFPOWNRPFPOWNRERPOWNEREO

| sort

utinme ~2s,

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00014.
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015
ni d00015

nmppnodes=\"14- 15\"

(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core
(core

stine ~2s

af fi
affi
affi
af fi
affi
af fi
af fi
affi
affi
affi
affi
af fi
affi
affi
af fi
affi
affi
af fi
affi
affi
affi
affi
affi
af fi
affi
affi
af fi
affi
affi
af fi
affi
affi

nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity
nity

0)
1)
2)
3)
4)
5)
6)
7)

9)
10)
11)
12)
13)
14)
15)
0)
1)
2)
3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)
14)
15)

99

Workload Management and Application Placement for the Cray Linux Environment™

9.11 Running

100

Modules required:

pbs or npab

and one of the following:

PrgEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Createscri pt 1:

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=6

Tell WVMB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ni do008/ user1

aprun -n 6 ./ npi

exit O

Set permissions to executable:

% chnod +x scriptl

Submit the job:

% qsub scriptl

The gsub command produces a batch job log file with output from npi (see
Running an MPI Application on page 78). Thejob outputisinascri pt 1. onnnnn
file.

% cat scriptl.o0238830 | sort
Application 848571 resources: utinme ~0s, stine ~0s

My PE: 0 M part: 816
My PE: 1 M part: 833
My PE: 2 M part: 850
My PE: 3 M part: 867
My PE: 4 MW part: 884
My PE: 5 M part: 800

PE: 0 Total is: 5050

Multiple Sequential Applications

To run multiple sequential applications, the number of processors you specify asan
argument to qsub must be equal to or greater than the largest number of processors
required by a single invocation of apr un in your script. For example, in job script
mul t _seq, the-1 nppw dt h valueis 6 because the largest apr un n valueis®6.

S-2496-42

Example Applications [9]

Modules required:

pbs or npab

and one of the following:

PrgEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Create script mul t _seq:

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppwi dt h=6

Tell WVMB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ni do00015/ userl

aprun -n 2 ./sinmple

aprun -n 3 ./npi

aprun -n 6 ./shnmem put

aprun -n 6 ./shmem get

exit O

The script launches applications si npl e (see Running a Basic Application on
page 77), npi (see Running an MPI Application on page 78), shmrem put (see
Using the Cray shnmem _put Function on page 79), and shnem get (see Using the
Cray shnmem get Function on page 81).

Set file permission to executable;

% chnod +x nmult _seq

Run the script:

% qsub mult_seq

S-2496-42 101

Workload Management and Application Placement for the Cray Linux Environment™

List the output:

% cat nult_seq. 0465713
hello frompe 0 of 2
hello frompe 1 of 2

M PE:
M/ PE:
M/ PE:

PE

PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE

aRredMRO

Test
Test
Test
Test
Test
Test

0

0 M part:
1 M part:

2 M part:
Total is:

passed.
passed.
passed.
passed.
passed.
passed.

0

apbwnN -

conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥
conput edsun¥

15
15
15
15
15
15

1683
1717
1650

5050

00000
00000
00000
00000
00000
00000

9.12 Running Multiple Parallel Applications

102

If you are running multiple parallel applications, the number of processors must be
equal to or greater than the total number of processors specified by callsto apr un.

For example, in job script mul t _par, the- |
the total of theapr un n valuesis 11.

Modules required:

pbs or npab

and one of the following:

Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-inte

nppwi dt h valueis 11 because

S-2496-42

Example Applications [9]

S-2496-42

Createmul t _par:

#! / bi n/ bash

#

Define the destination of this job

as the queue naned "workqg":

#PBS -q workq

#PBS -1 nppw dt h=11

Tell WVB to keep both standard output and
standard error on the execution host:
#PBS -k eo

cd /1 us/ni do0007/ userl

aprun -n 2 ./sinmple &

aprun -n 3 ./npi &
aprun -n 6 ./shmemput &
aprun -n 6 ./shmemget &
wai t

exit O

The script launches applications si npl e (see Running a Basic Application on

page 77), npi (see Running an MPI Application on page 78), shmrem put (see

Using the Cray shimem _put Function on page 79), and shnmem get (see Using the

Cray shnmem _get Function on page 81).

Set file permission to executable;

% chrmod +x mul t _par

Run the script:

% qsub mul t _par

List the output:

% cat nult_par.o07231
hello frompe 0 of 2
hello frompe 1 of 2
Application 520255 resources: utine ~0s, stine ~0Os

My PE: 0 M part: 1683
My PE: 2 M part: 1650
My PE: 1 M part: 1717

PE: 0 Total is: 5050

Application 520256 resources: utinme ~0s, stine ~0s
PE 0: Test passed.
PE 5: Test passed.
PE 4: Test passed.
PE 3: Test passed.
PE 2: Test passed.
PE 1: Test passed.
Application 520258 exit codes: 64
Application 520258 resources: utinme ~0s, stine ~0s
PE 0 conput edsunr 15. 00000

PE 5 conput edsunr 15. 00000
PE 4 conput edsun¥ 15. 00000
PE 3 conput edsunr 15. 00000
PE 2 conput edsunr 15. 00000
PE 1 conput edsunr 15. 00000

Application 520259 resources: utinme ~0s, stine ~0s

103

Workload Management and Application Placement for the Cray Linux Environment™

9.13 Using apr un Memory Affinity Options

In some cases, remote-NUMA-node memory references can reduce the performance
of applications. You can use the apr un memory affinity options to control
remote-NUMA-node memory references. For the- S, - sl , and - sn options,
memory allocation is satisfied using local-NUMA-node memory. If thereis not
enough NUMA node 0 memory, NUMA node 1 memory may be used. For the- ss,

only local-NUMA-node memory can be allocated.

9.13.1 Using the aprun - SOption

This example runs each PE on a specific NUMA node 0 CPU:

% aprun -n 4 ./xthi | sort

Application 225110 resources: utine ~0s, stine ~0Os

PE 0 ni dO0045 Core affinity = 0
PE 1 ni d0O0045 Core affinity = 1
PE 2 ni d0O0045 Core affinity = 2
PE 3 ni d0O0045 Core affinity = 3

This example runs one PE on each NUMA node of nodes 45 and 70:

% aprun -n 4 -S 1 ./xthi | sort

Application 225111 resources: utime ~0s, stine

PE 0 ni d0O0045 Core affinity = 0
PE 1 ni dO0045 Core affinity = 4
PE 2 ni dO0070 Core affinity =0
PE 3 ni d0O0070 Core affinity = 4

9.13.2 Using the aprun -sl Option
This example runs all PEs on NUMA node 1:

% aprun -n 4 -sl 1 ./xthi | sort

~0s

Application 57967 resources: utine ~1s, stine ~1s

Hello fromrank 0, thread 0, on ni d00014.
Hello fromrank 1, thread 0, on ni d00014.
Hello fromrank 2, thread 0, on ni d00014.
Hello fromrank 3, thread 0, on ni d00014.

This example runs all PEs on NUMA node 2:

% aprun -n 4 -sl 2 ./xthi | sort

(core
(core
(core
(core

affi
affi
affi
affi

Application 57968 resources: utine ~1s, stine ~1s

Hello fromrank 0, thread 0, on ni d00014.
Hello fromrank 1, thread 0, on ni d00014.
Hello fromrank 2, thread 0, on ni d00014.
Hello fromrank 3, thread 0, on ni d00014.

104

(core
(core
(core
(core

af fi
affi
af fi
affi

nity
nity
nity
nity

nity
nity
nity
nity

4)
5)
6)
7)

8)
9)
10)
11)

S-2496-42

Example Applications [9]

9.13.3 Using the aprun -sn Option

This example runs four PEs on NUMA node O of node 45 and four PEson NUMA
node O of node 70:

% aprun -n 8 -sn 1 ./xthi | sort
Application 2251114 resources: utinme ~0s, stine ~0s

PE 0 ni dO0045 Core affinity = 0
PE 1 ni d0O0045 Core affinity = 1
PE 2 ni d00045 Core affinity = 2
PE 3 ni d0O0045 Core affinity = 3
PE 4 ni dO0070 Core affinity = 0
PE 5 ni d0O0070 Core affinity = 1
PE 6 ni dO0070 Core affinity = 2
PE 7 ni d0O0070 Core affinity = 3

9.13.4 Using the aprun -ss Option

When - ss is specified, a PE can allocate only the memory that islocal to its assigned
NUMA node. The default isto allow remote-NUMA-node memory allocation. For
example, by default any PE running on NUMA node O can allocate NUMA node 1
memory (if NUMA node 1 has been reserved for the application).

This example runs PEs 0-3 on NUMA node 0, PEs 4-7 on NUMA node 1, PEs 8-11
on NUMA node 2, and PEs 12-15 on NUMA node 3. PEs 0-3 cannot allocate NUMA
node 1, 2, or 3 memories, PEs 4-7 cannot alocate NUMA node 0, 2, 3 memories, etc.

% aprun -n 16 -sl 0,1,2,3 -ss ./xthi | sort

Application 57970 resources: utine ~9s, stine ~2s
PE 0 ni d0O0014. (core affinity = 0-3)

PE 10 ni dO0014. (core affinity = 8-11)
PE 11 ni d00014. (core affinity = 8-11)
PE 12 ni d00014. (core affinity = 12-15)
PE 13 ni d00014. (core affinity = 12-15)
PE 14 ni d00014. (core affinity = 12-15)
PE 15 ni d0O0014. (core affinity = 12-15)
PE 1 ni d00014. (core affinity = 0-3)

PE 2 ni d00014. (core affinity = 0-3)

PE 3 ni d00014. (core affinity = 0-3)

PE 4 ni d00014. (core affinity = 4-7)

PE 5 ni d0O0014. (core affinity = 4-7)

PE 6 ni d00014. (core affinity = 4-7)

PE 7 ni d00014. (core affinity = 4-7)

PE 8 ni d0O0014. (core affinity = 8-11)
PE 9 ni d00014. (core affinity = 8-11)

9.14 Using apr un CPU Affinity Options

The following examples show how you can use apr un CPU affinity optionsto bind a
process to a particular CPU or the CPUs on aNUMA node.

S-2496-42 105

Workload Management and Application Placement for the Cray Linux Environment™

9.14.1 Using the aprun -cc cpu_list Option

This example binds PEs to CPUs 0-4 and 7 on an 8-core node:

% aprun -n 6 -cc 0-4,7 ./xth
Application 225116

PE
PE
PE
PE
PE
PE

0
1
2
3
4
5

ni d00045
ni d00045
ni d00045
ni d00045
ni d00045
ni d00045

Cor e
Cor e
Cor e
Cor e
Cor e
Cor e

resour ces:

affi
af fi
affi
affi
affi
affi

nity
nity
nity
nity
nity
nity

~NDWN PR

| sort
utinme ~0s, stine ~0s
0

9.14.2 Using the aprun -cc keyword Options

106

Processes can migrate from one CPU to another on a node. You can usethe- cc
option to bind PEs to CPUs. This example usesthe - cc cpu (default) option to
bind each PE to a CPU:

% aprun -n 8 -cc cpu ./xth
cation 225117

Appl i

PE
PE
PE
PE
PE
PE
PE
PE

0

~NOoO b WN PR

ni d00045
ni d00045
ni d00045
ni d00045
ni d00045
ni d00045
ni d00045
ni d00045

Cor e
Cor e
Cor e
Cor e
Cor e
Cor e
Cor e
Cor e

resources:

affi
af fi
affi
affi
affi
affi
affi
affi

nity
nity
nity
nity
nity
nity
nity
nity

~NOoO o~ WN PR

sort
utinme ~0s, stine ~0s
0

This example usesthe - cc numa_node option to bind each PE to the CPUs within

aNUMA node:

% aprun -n 8 -cc numa_node ./xthi | sort
Application 225118 resources: utine ~0s, stine ~0s
PE 0 ni d0O0045 Core affinity = 0-3

PE 1 ni dO0045 Core affinity = 0-3

PE 2 ni d0O0045 Core affinity = 0-3

PE 3 ni d0O0045 Core affinity = 0-3

PE 4 ni dO0045 Core affinity = 4-7

PE 5 ni d0O0045 Core affinity = 4-7

PE 6 ni d0O0045 Core affinity = 4-7

PE 7 ni dO0045 Core affinity = 4-7

S-2496-42

Example Applications [9]

9.15 Using Checkpoint/Restart Commands

To checkpoint and restart a job, first load these modules:

noab
bl cr

This example shows the use of the ghol d and gchkpt checkpoint commands and
theqr| s and gr er un restart commands.

Source code of cr. c:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>
#i ncl ude "npi . h"

#i ncl ude <signal . h>
#i nclude <stdlib. h>

static void sig_handler(int);

static unsigned int Cnt = O; /* Counter that is
i ncrenented each tine app is checkpointed. */

static int ne;

i nt
main (int argc, char *argv[])
{
int all, ret;
int sleep_tinme=100000;
ret = MPI_Init(&rgc, &argv);
ret = MPI_Comm rank (MPI_COWM WORLD, &me);
ret = MPI_Comm si ze(MPI _COW WORLD, &all);
if (me == 0) {
if (signal (SI GCONT, sig handler) == SIG ERR) {
printf("Can't catch SI GCONT\n");
ret = MPl_Finalize();
exit(3);
}
printf ("Partition size is = %\n", all);
}
ret = 999;

while (ret '=0) {

Cnt += 1;
ret = sleep(sleep_tine);
if (ret '=0) {

printf("PE % PID %l interrupted at cnt: %l\n", me, getpid(), Cnt);
sleep_time = ret;
}
}

printf ("Finished with count at: &d, exiting \n", Cnt);

S-2496-42 107

Workload Management and Application Placement for the Cray Linux Environment™

ret = MPI_Finalize();

static void

si g_handl er (i nt signo)

{
printf("\n");

% gst at
Job id

87151. ni dO0O003

108

Compilecr. c:

%cc -o cr cr.c

Create script cr _scri pt:

#! [usr/ bi n/ ksh

#PBS -1 nppwi dt h=2

#PBS -1 nppnppn=1

#PBS -j oe

#PBS -1 wal | ti me=6: 00: 00

cd to directory where job was submitted from
cd /1 us/nid00015/ user12/c

export MPI CH_VERSI ON_DI SPLAY=1
aprun -n 2 -N 1 ./cr

wait ;

Launch the job:

% qsub cr_script
87151. ni dO0O003

The WMS returns the job identifier 87151. ni d00003. Usejust the first part
(sequence number 87151) in checkpoint/restart commands.

Check the job status:
Nane User Time Use S Queue
cr_script user 12 00: 00: 00 R workqg

Thejob isrunning (gst at state SisR).

S-2496-42

Example Applications [9]

Check the status of application cr :

% apst at
Conput e node summary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1

Placed Apid Resld User PEs Nodes Age State Conmand
331897 6 user 12 2 2 0hO3m run cr

The application is running (St at e isr un).

Checkpoint the job, placeit in hold state, and recheck job and application status:
% ghol d 87151

% qgst at
Job id Nanme User Time Use S Queue
87151. ni d00003 cr_script user 12 00: 00: 00 H workqg
% apst at
Conput e node summary
arch config up use held avail down
XT 72 72 0 0 72 0

No pendi ng applications are present
No pl aced applications are present

The job is checkpointed and its state changes from run to hold. Applicationcr is
checkpointed (apst at St at e fieldischkpt), then stops running.

Note: The ghol d command checkpointed the job because it was submitted with
the- ¢ enabl ed option.

Release the job, get status to verify, then restart it:
%qrls 87151

% qgst at
Job id Nanme User Time Use S Queue
87151. ni d00003 cr_script user 12 00: 00: 00 R workqg
% apst at
Conput e node summary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1

Pl aced Apid Resld User PEs Nodes Age State Conmand
331899 7 user12 2 2 0hOOm run cr

Thejobisrunning (gst at SfieldisRand application St at e isr un).

S-2496-42

Workload Management and Application Placement for the Cray Linux Environment™

Checkpoint the job but keep it running:
% qchkpt 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni dO0003 cr_script user 12 00: 00: 00 R workqg
% apst at
Conput e node sunmary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1
Placed Apid Resld User PEs Nodes Age St at e Commrand
331899 7 user 12 2 2 0h02m run cr

Thegst at Sfield changed to R, and the application state changed from chkpt to

run.

Use qdel to stop the job:
% qdel 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni dO0003 cr_script user 12 00: 00: 00 C workqg

Usethe gr er un command to restart a completed job previously checkpointed:

% grerun 87151

% gst at
Job id Nane User Time Use S Queue
87151. ni d0O0003 cr_script user 12 00: 00: 00 R workqg
% apst at
Conput e node summary
arch config up use held avail down
XT 72 72 2 0 70 0

No pendi ng applications are present

Total placed applications: 1
Pl aced Apid Resld User PEs Nodes Age St at e Conmand
331901 8 user 12 2 2 0hOOmMm run cr

You can useqr er un to restart ajob if the job remains queued in the compl eted state.

110

S-2496-42

Example Applications [9]

At any step in the checkpoint/restart process, you can usetheqst at - f optionto
displays details about the job and checkpoint files:

% qgstat -f 87151
Job 1d: 87151. ni d0O0003
Job_Name = cr_scri pt
Job_Owner = user 12@i d00004
<sni p>
Checkpoi nt = enabl ed
<sni p>
coment = Job 87151. ni dO0O003 was checkpoi nted and continued to /lus/scratc
h/ BLCR_checkpoi nt _dir/ckpt.87151. ni d00003. 1237761585 at Sun Mar 22 17
39: 45 2009

<sni p>
checkpoint _dir = /lus/scratch/ BLCR checkpoint_dir
checkpoi nt _name = ckpt.87151. ni d00003. 1237761585
checkpoint _time = Sun Mar 22 17:39:45 2009
checkpoint _restart_status = Successfully restarted job

You can get details about the checkpointed filesin checkpoi nt _di r:

% cd /1 us/scratch/BLCR checkpoint _dir

%ls -al

<sni p>

drwx------ 3 user12 devl 4096 2009-03-22 17:35 ckpt.87151. ni d00003. 1237761347
drwx------ 3 user12 devl 4096 2009-03-22 17:39 ckpt.87151. ni d00003. 123776158
% cd ckpt.87151. ni d00003. 123776158

%Ils

331899 cpr.context info.7828
% cd 331899

%ls

context.0 context.1

Thereisacont ext . nfilefor eachwidthvalue (-1 nppw dt h=2).

9.16 Running Compute Node Commands
You can usetheapr un - b option to run compute node BusyBox commands.

The following apr un command runs the compute node gr ep command to find
references to Menilrot al in compute node file/ pr oc/ meni nf o:

% aprun -b grep MenTotal /proc/nmem nfo
MenTot al : 8124872 kB

9.17 Using the High-level PAPI Interface

PAPI provides simple high-level interfaces for instrumenting applications written in C
or Fortran. This example shows the use of the PAPI _start _counters() and
PAPI _st op_count er s() functions.

S-2496-42 111

Workload Management and Application Placement for the Cray Linux Environment™

Modules required:

xti - papi

and one of the following:
Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Source of papi _hl . c:

#i ncl ude <papi . h>
voi d mai n()

{
int retval, Events[2]= {PAPI_TOT_CYC, PAPI_TOT_I NS};
| ong_l ong val ues[2];
if (PAPI _start_counters (Events, 2) != PAPI_OK) {
printf("Error starting counters\n");
exit(1);
}
/* Do sone conputation here... */
if (PAPI _stop_counters (values, 2) != PAPI _OK) {
printf("Error stopping counters\n");
exit(1);
}
printf("PAPI _TOT_CYC = % 1d\n", values[0]);
printf("PAPI _TOT_INS = % 1d\n", values[1]);
}

Compile papi _hl . c:
% cc -o papi_hl papi_hl.c
Run papi _hl :

% aprun ./ papi _hl

PAPI _TOT_CYC = 4020

PAPI _TOT INS = 201

Application 520262 exit codes: 19

Application 520262 resources: utine ~0s, stine ~0s

9.18 Using the Low-level PAPI Interface

112

PAPI provides an advanced low-level interface for instrumenting applications.
Initialize the PAPI library before calling any of these functions by issuing either
ahigh-level function call or acal to PAPI _|ibrary_init (). Thisexample
shows the use of the PAPI _cr eate_event set (), PAPI _add_event (),
PAPI _start (), andPAPI _read() functions.

S-2496-42

Example Applications [9]

Modules required:

xti - papi

and one of the following:
Pr gEnv-cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-int el

Source of papi _I1.c:

#i ncl ude <papi . h>
voi d mai n()

{
int EventSet = PAPI _NULL;
| ong_l ong val ues[1];
[* Initialize PAPI library */
if (PAPI _library_init(PAPI _VER CURRENT) != PAPI _VER CURRENT) {
printf("Error initializing PAPI library\n");
exit(1);
}
/* Create Event Set */
if (PAPI _create_eventset (& ventSet) != PAPI _OK) {
printf("Error creating eventset\n");
exit(1);
}
/* Add Total Instructions Executed to eventset */
i f (PAPI _add_event (EventSet, PAPI_TOT_INS) != PAPI _OK) {
printf("Error adding event\n");
exit(1);
}
/[* Start counting ... */
if (PAPI _start (EventSet) != PAPI_OK) {
printf("Error starting counts\n");
exit(1);
}
/* Do sone conputation here...*/
if (PAPI _read (EventSet, values) != PAPI _K) {
printf("Error stopping counts\n");
exit(1);
}
printf("PAPI_TOT_INS = % Id\n", values[O0]);
}
Compilepapi _I1.c:
%cc -o papi_Il papi_Il.c

S-2496-42 113

Workload Management and Application Placement for the Cray Linux Environment™

Run papi _I1:

% aprun ./ papi _||I

PAPI _TOT INS = 97

Application 520264 exit codes: 18

Application 520264 resources: utine ~0s, stine ~0Os

9.19 Using CrayPat

114

This example shows how to instrument a program, run the instrumented program,
and generate CrayPat reports.

Modules required:

perftools

and one of the following:

PrgEnv- cray

Pr gEnv- pgi

Pr gEnv- gnu

Pr gEnv- pat hscal e
PrgEnv-i nt el

Source code of pal. f 90:

program nain
include 'nmpif.h'

call MPI _Init(ierr) ! Required
call MPI_Comm rank(MPI _COWM WORLD, nype,ierr)
call MPI_Comm si ze(MPI _COW WORLD, npes, i err)

print * 'hello frompe', mype,' of', npes

do i =1+nype, 1000, npes ! Distribute the work
call work(i, mype)
enddo

call MPI_Finalize(ierr) ! Required
end

Source code of pa2. c:

void work_(int *N, int *MYPE)

{
int n=*N, nype=* MYPE;
if (n==42) {
printf("PE %l: sizeof(long) = %\ n", nype, si zeof (1 ong));
printf("PE %: The answer is: %\n", nype, n);
}
}

Compilepa2. ¢ and pal. f 90 and create executable per f :

% cc -c pa2.c
% ftn -o perf pal.f90 pa2.o0

S-2496-42

Example Applications [9]

Run pat _bui | d to generate instrumented program per f +pat :

% pat _build -u -g npi perf perf+pat
INFO A trace intercept routine was created for the function ' MAIN_'.
INFO A trace intercept routine was created for the function '"work_'.

The tracegroup (- g option) isnpi .
Run per f +pat :

% aprun -n 4 ./perf+pat | sort

CrayPat/ X: Version 5.0 Revision 2635 06/04/09 03:13:22
Experinent data file witten:

/mt /1 ustre_server/user12/ perf +pat +1652- 30t dt . xf
Application 582809 resources: utinme ~0s, stine ~0s

hell o from pe 0 of 4
hell o from pe 1 of 4
hell o from pe 2 of 4
hell o from pe 3 of 4

PE 1: sizeof(long) = 8
PE 1. The answer is: 42

Note: When executed, the instrumented executable creates directory
progname+pat +PlDkeyletters, where . PID isthe process ID that was assighed to
the instrumented program at run time.

Run pat _report togenerate reportsper f . r pt 1 (using default pat _r eport
options) and per f . r pt 2 (using the- O cal | t r ee option).

% pat _report perf+pat+1652-30tdt.xf > perf.rptl

pat _report: Creating file: per f +pat +1652- 30t dt . ap2

Data file 1/1: [......]

% pat _report -O calltree perf+pat+1652-30tdt.xf > perf.rpt2

pat _report: Using existing file: per f +pat +1652- 30t dt . ap2

Data file 1/1: [......]

% pat _report -Ocalltree -f ap2 perf+pat+1652-30tdt. xf

Qutput redirected to: perf+pat+1652-30tdt.ap2

Note: The-f ap2 optionisusedto create a*. ap?2 filefor input to
Cray Apprentice2 (see Using Cray Apprentice2 on page 117).

Listperf.rpt1:

CrayPat/ X: Version 5.0 Revision 2635 (xf 2571) 06/04/09 03: 13: 22
Nunber of PEs (MPI ranks): 4

Nunber of Threads per PE: 1

Nurmber of Cores per Processor: 4

<sni p>

Table 1: Profile by Function G oup and Function

Time % | Time |Inb. Tine | Imb. | Calls | Group

| | | Tinme % | | Function

S-2496-42 115

Workload Management and Application Placement for the Cray Linux Environment™

I I I I | PE='"HDE

100.0%| 0.000151 | o -- | 257.0 | Total
| __
| 98.9%]| 0.000150 | o - | 253.0 | USER
T CELT T NI RO
|| 81.0%]| 0.000122 | 0.000002 | 2.3%| 1.0 |MAIN
|| 14.5%]| 0.000022 | 0.000001 | 4.8%| 1.0 |exit
Il 2.1%]| 0.000003 | 0.000001 | 20.1%| 1.0 [nain
| 1.2%]| 0.000002 | 0.000000 | 10.2%]| 250.0 |work
| |: ===
| 1.1%]| 0.000002 | o -] 4.0 |MWI
|

Table 2: Load Balance with MPI Message Stats

Time % | Time | Goup
| | PE

100. 0% | 0.000189 | Tot al
98.6% | 0.000186 | USER
25.5% | 0.000193 |pe. 1
24.7%| 0.000187 |pe.O

2
3

I

I

| 24.3%]| 0.000183 | pe.
| 24.1%]| 0.000182 | pe.
I

| 0.4%| 0.000003 |pe.1
| 0.4%]| 0.000003 |pe.2
| 0.3%]| 0.000003 |pe.O
| 0.3%]| 0.000003 |pe.3

I
I
I
I
I
I
I
| 1.4%] 0.000003 | MPI
I
I
I
I
I
I

Table 5: Program Wall dock Time, Menory H gh Water Mark

Process | Process |PE
Time | H Mem |
| (MBytes) |
0. 033981 | 20 | Total
| _______________________
| 0.034040 | 19. 742 |pe.2
| 0.034023 | 19. 750 | pe. 3
| 0.034010 | 19.754 | pe.O
| 0.033851 | 19.750 |pe.1
| =

========= Additional details == ==

Experinent: trace

116

S-2496-42

Example Applications [9]

<sni p>
Esti mated mi ni mum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report
(for raw data, use the option: -s overhead=include):
Ti me 0.241 microseconds

Nurmber of traced functions: 102
(To see the list, specify: -s traced_functions=show)

Listperf.rpt2:

CrayPat/ X: Version 5.0 Revision 2635 (xf 2571) 06/04/09 03: 13: 22
Nunber of PEs (MPI ranks): 4

Nunber of Threads per PE: 1

Nunmber of Cores per Processor: 4

<sni p>

Table 1: Function Calltree View

Time % | Time | Calls |Calltree
I | | PE='H DE

100.0% | 0.000181 | 657.0 | Total

69.7% | 0.000126 | 255.0 | MAIN_

| 67.7%] 0.000122 | 1.0 | MAI N_(excl usive)
| 1.0% | 0.000002 | 250.0 |work_
|: =
12.2% | 0.000022 | 1.0 |exit
1.8% | 0.000003 | 1.0 |main

========= Additional details == ==

Experinent: trace

<sni p>

Esti mated mi ni mum overhead per call of a traced function,
whi ch was subtracted fromthe data shown in this report
(for raw data, use the option: -s overhead=incl ude):

Ti ne 0.241 m croseconds

Nurmber of traced functions: 102
(To see the list, specify: -s traced_functions=show)

9.20 Using Cray Apprentice2

In the CrayPat example (Using CrayPat on page 114), we ran the instrumented
program per f and generated fileper f +pat +1652- 30t dt . ap2.

S-2496-42 117

Workload Management and Application Placement for the Cray Linux Environment™

To view this Cray Apprentice2 file, first load the per f t ool s module.
% nodul e | oad perftools

Then launch Cray Apprentice2:

% app2 perf+pat +1652- 30t dt . ap2

Display the resultsin call-graph form:

Figure 9. Cray Apprentice2 Callgraph
sl Apprentice25.0 _____________ PA=E>

Eile Help
¥ perf+pat+1652-30tdt.ap2 X |

@eexn

w Overview &]‘Erwirunmem X | w Callgraph ¥ |

work
{|q=32.7073‘}i)

[4

Seart:h:[l @ S}

perf+pat+1652-30tdt.ap2 (48 events in 0.0515) i

118 S5-2496-42

Further Information [A]

A.1 Related Publications

Cray systems run with a combination of Cray proprietary, third-party, and open
source products, as documented in the following publications.

A.1.1 Publications for Application Developers

S-2496-42

Cray Application Developer's Environment User's Guide

Cray Application Developer's Environment Installation Guide

Cray Linux Environment (CLE) Software Release Overview

Cray C and C++ Reference Manual

Cray Fortran Reference Manual

Cray compiler command options man pages. cr aycc(l), crayft n(1)
PGI User's Guide

PGI Tools Guide

PGI Fortran Reference

PGI compiler command options man pages. pgcc(1), pgCC(1), pgf 95(1)
GCC manuals: http://gcc.gnu.org/onlinedocs/

GCC compiler command options man pages. gcc (1), g++(1), gf ort ran(l)
PathScale manuals: http://www.pathscal e.com/docs.html

PathScale compiler command options man pages. pat hcc(1), pat hCC(1),
pat h95(1), eko(7)

Cray compiler driver commands man pages. cc(1), CC(1), f t n(1)
Modules utility man pages: nodul e(1), rodul ef i | e(4)

Application launch command man page: apr un(1)

119

http://gcc.gnu.org/onlinedocs/
http://www.pathscale.com/docs.html

Workload Management and Application Placement for the Cray Linux Environment™

e Paralé programming models:
— Cray MPICH2 man pages (read thei nt r o_npi (3) man page first)
— Cray SHMEM man pages (read thei nt r o_shnmem(3) man page first)
— OpenMP documentation: http://www.openmp.org/
— Cray UPC man pages (read thei nt r o_upc(3c) man page first)

Unified Paralel C (UPC) documents: Berkeley UPC website
(http://upc.Ibl.gov/docy/).

e Cray scientific library, XT-LibSci, documentation:

Basic Linear Algebra Subroutines (BLAS) man pages

— LAPACK linear algebra man pages

— ScalLAPACK pardléd linear algebra man pages

— Basic Linear Algebra Communication Subprograms (BLACS) man pages

— Iterative Refinement Toolkit (IRT) man pages (read thei ntro_i r t (3) man
page first)

— SuperLU sparse solver routines guide (SuperLU Users' Guide)
* AMD Core Math Library (ACML) manual

e FFTW 2.1.5 and 3.1.1 man pages (read thei ntro_f ftw2(3) or
i ntro_fftw3(3) man page first)

» Portable, Extensible Toolkit for Scientific Computation (PETSC) library, an
open source library of sparse solvers. Seethei nt r o_pet sc(3) man page and
http://www-unix.mcs.anl .gov/petsc/petsc-as/index.html

* NetCDF documentation (http://www.unidata.ucar.edu/software/netcdf/)
e HDF5 documentation (http://www.hdfgroup.org/HDF5/whatishdf5.html)
e Lustrel f s(1) man page

» PBSProfessional 9.0 User's Guide

« PBSProfessiona man pages (qsub(1B) , gst at (1B), and qdel (1B))
¢ Moab and TORQUE documentation (http://www.clusterresources.com/)
« TotalView documentation (http://www.roguewave.com)

e GNU debugger documentation (see the |l gdb(1) man page and the GDB User
Manual at http://www.gnu.org/software/gdb/documentation/).

* PAPI man pages (read thei nt r o_papi (3) man page first)

120 S-2496-42

http://www.openmp.org/
http://upc.lbl.gov/docs/
http://www-unix.mcs.anl.gov/petsc/petsc-as/index.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/HDF5/whatishdf5.html
http://www.clusterresources.com/
http://www.totalviewtech.com/
http://www.gnu.org/software/gdb/documentation/

Further Information [A]

S-2496-42

PAPI manuals (see http://icl.cs.utk.edu/papi/)

Using Cray Performance Measurement and Analysis Tools
CrayPat man pages (read thei nt r o_cr aypat (1) man page first)
Cray Apprentice2 man page (app2(1))

CLE man pages

SUSE Linux man pages

Linux documentation (see the Linux Documentation Project at
http://www.tldp.org and SUSE documentation at http://www.suse.com)

121

http://icl.cs.utk.edu/papi/
http://www.tldp.org
http://www.suse.com

	Workload Management and Application Placement for the Cray Linux
	Changes to this Document
	System Overviews [1]
	1.1 Cray System Features

	Running Applications [2]
	2.1 Using the aprun Command
	2.1.1 ALPS Application Environment Variables
	2.1.2 Usage Output String

	2.2 Understanding Application Placement
	2.2.1 System Interconnnect Features Impacting Application Placeme
	2.2.2 Application Placement Algorithms on Cray Systems

	2.3 Gathering Application Status and Information on the Cray Syst
	2.3.1 Using the xtnodestat Command

	2.4 Using the cnselect Command
	2.5 Understanding How Much Memory is Available to Applications
	2.6 Core Specialization
	2.7 Launching an MPMD Application
	2.8 Managing Compute Node Processors from an MPI Program
	2.9 About aprun Input and Output Modes
	2.10 About aprun Resource Limits
	2.11 About aprun Signal Processing
	2.12 Reserved File Descriptors

	Running User Programs on Service Nodes [3]
	Using Workload Management Systems [4]
	4.1 Creating Job Scripts
	4.2 Submitting Batch Jobs
	4.3 Getting Job Status
	4.4 Removing a Job from the Queue

	Dynamic Shared Objects and Libraries (DSLs) [5]
	5.1 Introduction
	5.2 About the Compute Node Root Run Time Environment
	5.2.1 DSL Support

	5.3 Configuring DSL
	5.4 Building, Launching, and Workload Management Using Dynamic Ob
	5.4.1 Linker Search Order

	5.5 Troubleshooting
	5.5.1 Error While Launching with aprun: "error while loading shar
	5.5.2 Running an Application Using a Non-existent Root
	5.5.3 Performance Implications of Using Dynamic Shared Objects

	Using Cluster Compatibility Mode in CLE [6]
	6.1 Cluster Compatibility Mode
	6.1.1 CCM Implementation

	6.2 Installation and Configuration of Applications for CCM
	6.3 Using CCM
	6.3.1 CCM Commands
	6.3.1.1 ccmrun
	6.3.1.2 ccmlogin

	6.3.2 Starting a CCM Batch Job
	6.3.3 X11 Forwarding in CCM
	6.3.4 ISV Application Acceleration (IAA)
	6.3.4.1 Configuring Platform MPI (HP-MPI) and Launching mpirun
	6.3.4.2 Caveats and Limitations for IAA
	6.3.4.3 Troubleshooting IAA

	6.4 Individual Software Vendor (ISV) Example
	6.5 Troubleshooting
	6.5.1 CCM Initialization Fails
	6.5.2 pam_job.so Is Incompatible with CCM
	6.5.3 PMGR_COLLECTIVE ERROR
	6.5.4 Job Hangs When sa Parameter Is Passed to Platform MPI
	6.5.5 "MPI_Init: dlopen" Error(s)
	6.5.6 Bus Errors In an Application, MPI, or libibgni
	6.5.7 glibc.so Errors at Start of Application Launch
	6.5.8 "orted: command not found"

	6.6 Caveats and Limitations for CCM
	6.6.1 ALPS Does Not Accurately Reflect CCM Job Resources
	6.6.2 Open MPI and Moab and TORQUE Integration Not Supported
	6.6.3 Miscellaneous Limitations

	Using Checkpoint/Restart [7]
	Optimizing Applications [8]
	8.1 Using Compiler Optimization Options
	8.2 Using aprun Memory Affinity Options
	8.3 Using aprun CPU Affinity Options
	8.4 Exclusive Access
	8.5 Optimizing Process Placement on Multicore Nodes

	Example Applications [9]
	9.1 Running a Basic Application
	9.2 Running an MPI Application
	9.3 Using the Cray shmem_put Function
	9.4 Using the Cray shmem_get Function
	9.5 Running Partitioned Global Address Space (PGAS) Applications
	9.5.1 Running a Unified Parallel C (UPC) Application
	9.5.2 Running a Fortran 2008 Application Using Coarrays

	9.6 Running an Acclerated Cray LibSci Routine
	9.7 Running a PETSc Application
	9.8 Running an OpenMP Application
	9.9 Running an Interactive Batch Job
	9.10 Running a Batch Job Script
	9.11 Running Multiple Sequential Applications
	9.12 Running Multiple Parallel Applications
	9.13 Using aprun Memory Affinity Options
	9.13.1 Using the aprun -S Option
	9.13.2 Using the aprun -sl Option
	9.13.3 Using the aprun -sn Option
	9.13.4 Using the aprun -ss Option

	9.14 Using aprun CPU Affinity Options
	9.14.1 Using the aprun -cc cpu_list Option
	9.14.2 Using the aprun -cc keyword Options

	9.15 Using Checkpoint/Restart Commands
	9.16 Running Compute Node Commands
	9.17 Using the High-level PAPI Interface
	9.18 Using the Low-level PAPI Interface
	9.19 Using CrayPat
	9.20 Using Cray Apprentice2

	Further Information [A]
	A.1 Related Publications
	A.1.1 Publications for Application Developers

	List of Figures
	Figure 1. Cabinet View Showing Three Applications in Original Se
	Figure 2. Cabinet View Showing Three Applications in New Orderin
	Figure 3. Topology View of Original Application Ordering
	Figure 4. Topology View of New Application Ordering
	Figure 5. SeaStar Interconnect Links
	Figure 6. Gemini Interconnect Links
	Figure 7. Cray Job Distribution Cross Section
	Figure 8. CCM Job Flow Diagram
	Figure 9. Cray Apprentice2 Callgraph

	List of Examples
	Example 1. Compiling an application
	Example 2. Running an application in interactive mode
	Example 3. Running an application using a workload management sy
	Example 4. Running a program using a batch script
	Example 5. Launching a CCM application using PBS or Moab and TOR
	Example 6. Launching a CCM application using Platform LSF
	Example 7. Launching the UMT/pyMPI benchmark using CCM

	List of Procedures
	Procedure 1. Disabling CSA Accounting for the cnos class view

	List of Tables
	Table 1. aprun Versus qsub Versus bsub (LSF) Options

