
RR

Using the PAPI Cray NPU Component

S–0046–10

© 2013 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray and Sonexion are federally registered trademarks and Active Manager, Cascade, Cray Apprentice2,
Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC,
Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM,
Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2,
Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XK6, Cray XK6m,
Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6,
Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, LibSci, NodeKARE, RapidArray, The Way to Better
Science, Threadstorm, uRiKA, UNICOS/lc, and YarcData are trademarks of Cray Inc.

Intel, Gemini, and Aries are trademarks of Intel Corporation or its subsidiaries in the United States and other
countries. UNIX, the “X device,” X Window System, and X/Open are trademarks of The Open Group. All other
trademarks are the property of their respective owners.

RECORD OF REVISION

S–0046–10 Published March 2013 Supports PAPI release 5.1.02 running on Cray XE, Cray XK, and Cray XC30
systems.

Contents

Page

Using the PAPI Cray NPU Component 5

1.1 Prerequisites . 5

1.2 Enabling Access . 6

1.3 Programming Tips . 7

1.4 Examples . 8

1.4.1 Accessing Gemini Network Performance Counters and Reading Two Events 8

1.4.2 Accessing Aries Network Performance Counters and Reading Two Events 9

1.4.3 Accessing Aries Network Performance Counters, Configuring Three Events, and Reading Eight
Events . 10

Examples
Example 1. Gemini Counters: Reading Two Events 8

Example 2. Aries Counters: Reading Two Events 9

Example 3. Aries Counters: Configuring Three Events and Reading Eight Events 10

S–0046–10 3

Using the PAPI Cray NPU Component

With the release of PAPI 5.1.0.2, Cray now provides direct access to the Gemini™
and Aries™ network performance counters via the Performance API (PAPI). This
document is intended for third-party software developers and users planning to write
their own programs that will use PAPI functions to access the Gemini and Aries
network counters.

This document assumes that you already have a good understanding of PAPI.
For reference documentation and more information, see the PAPI website at
http://icl.cs.utk.edu/papi/.

For more information about PAPI as implemented on Cray systems, see the
intro_papi(3) and papi_counters(5) man pages.

1.1 Prerequisites
Because of the structure of the Cray system, any program running on a Cray must be
launched using the aprun utility. This is required to ensure that the program runs
on a compute node, and not on a service node or the native processor of an esLogin
system. This is even more important when writing programs that use PAPI functions,
as you want to be certain you are addressing the hardware counters in the compute
node processors and Gemini or Aries network router chips, and not other hardware
that may be unrelated to the nodes on which you run applications.

Therefore, before using PAPI, verify that the following modules are loaded:

• craype-network-gemini (Cray XE and Cray XKsystems)

• craype-network-aries (Cray XC30 systems)

• craype-processor (depending on the type of CPU used on your system’s
compute nodes)

• PrgEnv-compiler (depending on your choice of compiler)

• papi/5.1.0.2 (or later)

Note: The papi, perftools, and perftools-lite modules are mutually
exclusive. Therefore, in addition to verifying that the above modules are loaded,
verify also that the perftools and perftools-lite modules are not loaded.

S–0046–10 5

http://icl.cs.utk.edu/papi/

Using the PAPI Cray NPU Component

1.2 Enabling Access
Before using your own programs or tools to access network performance counters,
you must set the CRAY_NPU_ACCESS environment variable. This environment
variable is a bitmask that reflects your expected use of the network counters. If the
network counters access bits are not set correctly, PAPI_read and PAPI_write
will issue an error message, and these functions will return nonzero, indicating a
failure.

The valid values are as follows.

0x1 Requests access only to local processor tile counters on routers
directly attached to the nodes of a job; places the job only on
compute nodes where there is no reserved network performance
counter access to the routers servicing those nodes. This guarantees
that no router is attached directly to nodes from two such jobs that
are running concurrently.

0x2 Requests access to both local processor tile counters and network tile
counters on routers directly attached to the nodes of a job; places
the job only on compute nodes where there is no reserved network
performance counter access to the routers servicing those nodes. This
guarantees that no router is attached directly to nodes from two such
jobs that are running concurrently.

0x4 Requests access to all tile counters on all routers in the system;
job is only placed if no other application has reserved access to
any network tiles on the whole system (i.e. there can be other
applications with reserved access to only local processor tile counters
with the earlier constraint about local processor tiles). A job with
this setting will not be run concurrently with any other job that sets
CRAY_NPU_ACCESS to a value of 0x2 or 0x4.

This environment variable must be set in order to ensure that the PAPI Cray NPU
Component interacts as expected with ALPS, aprun, and apsched, and that the job
requesting access to the network performance counters is placed on the system in a
physical location that is minimally affected by other jobs’ network traffic.

6 S–0046–10

Using the PAPI Cray NPU Component

1.3 Programming Tips
The example programs in Examples on page 8 use simple C programs to illustrate
how to use PAPI to address network counters directly. The best way to determine how
to use the PAPI Cray NPU Component in your programs is by studying the example
programs.

While developing code to access PAPI counters, bear the following tips in mind.

• The Gemini network router chips used in Cray XE and Cray XK systems have
substantial differences from the Aries network router chips used in Cray XC30
systems. For a full list of the counters available for use by your program, load the
papi module and use the PAPI_native_avail command.

• If the perftools module is loaded, you can find the list of Gemini counters
in the $CRAYPAT_ROOT/share/Counters.papi_gemini and
$CRAYPAT_ROOT/share/Counters.papi_gemini.xml files, or in the
counters→gemini topics in the pat_help system.

Likewise, the Aries counters are found in
$CRAYPAT_ROOT/share/Counters.papi_aries or
$CRAYPAT_ROOT/share/Counters.papi_aries.xml, or in the
counters→aries topics in pat_help.

Further information about PAPI utilities can be found in the intro_papi(3)
man page. However, the perftools, perftools-lite, and papi modules
are mutually exclusive; you may load one, but not two or three at the same time.
Therefore, if you unload the perftools or perftools-lite module
and load the papi module, the Cray-originated man pages, the pat_help
command, and the $CRAYPAT_ROOT path will be unavailable. If you plan to use
utilities or develop programs that use the PAPI Cray NPU Component, plan your
work and save your reference information accordingly.

• In PAPI, most event names are quite long. When used with CrayPat, these event
names are typically placed in a text file and passed in to CrayPat using the
PAT_RT_HWPC_FILE, PAT_RT_NWPC_FILE, or PAT_RT_ACCPC_FILE
environment variables. When writing code that uses PAPI calls directly, you will
need to determine the best way to represent these lengthy event names in your
code.

• When developing your PAPI program, remember that only one event set
for a given component can be running at one time. While multiple event
sets can be defined, only one can be active; that is, associated with a
PAPI_start..PAPI_stop pair. If multiple event sets are activated at the
same time, the resulting PAPI_write and PAPI_read calls are not guaranteed
to produce valid results. The PAPI library does not prevent the user from
implementing this behavior. PAPI_OK is still returned even if these conditions
are violated.

S–0046–10 7

Using the PAPI Cray NPU Component

• One outstanding difference between Gemini and Aries counters is that all Gemini
counters are read-only, while some Aries counters are also writable. Accordingly,
Accessing Aries Network Performance Counters, Configuring Three Events,
and Reading Eight Events on page 10 shows how to both write and read Aries
counters.

• For more information about the Aries counters, see Using the Aries Hardware
Counters (S–0045).

1.4 Examples
The following examples demonstrate how to use PAPI in simple C programs to
address network counters directly.

1.4.1 Accessing Gemini Network Performance Counters and Reading
Two Events

Example 1. Gemini Counters: Reading Two Events

/* Simple example of accessing Gemini network performance counters
* via PAPI. Collecting and checking all return values has been
* left out for clarity.
*/

#include <papi.h>
#include <stdio.h>
#include <string.h>

int
main (int argc, char *argv[])
{

int i;
int event_set = PAPI_NULL;
int code = 0;
long long values[2];
char *events[] = {

"GM_RMT_PERF_PUT_BYTES_RX",
"GM_RMT_PERF_SEND_BYTES_RX",
NULL

};

PAPI_library_init (PAPI_VER_CURRENT);
PAPI_create_eventset (&event_set);

for (i=0; events[i] != NULL; i++) {
PAPI_event_name_to_code (events[i], &code);
PAPI_add_event (event_set, code);

}

8 S–0046–10

Using the PAPI Cray NPU Component

PAPI_start (event_set);

/* perform work */

memset (values, 0, sizeof(values));
PAPI_stop (event_set, values);

/* process values */
for (i=0; events[i] != NULL; i++) {

printf (" %s = %lld\n", events[i], values[i]);
}

PAPI_cleanup_eventset (event_set);
PAPI_destroy_eventset (&event_set);
PAPI_shutdown ();

return 0;
}

1.4.2 Accessing Aries Network Performance Counters and Reading Two
Events

Example 2. Aries Counters: Reading Two Events

/* Simple example of accessing Aries network performance counters
* via PAPI. Collecting and checking all return values has been
* left out for clarity.
*/

#include <papi.h>
#include <stdio.h>
#include <string.h>

int
main (int argc, char *argv[])
{

int i;
int code = 0;
int event_set = PAPI_NULL;
long long values[2];
char *events[] = {

"AR_NIC_SSID_PRF_CNTR_SSIDS_IN_USE:MAX_SSIDS_IN_USE",
"AR_NIC_SSID_PRF_CNTR_SSIDS_IN_USE:CUR_SSIDS_IN_USE",
NULL

};

PAPI_library_init (PAPI_VER_CURRENT);
PAPI_create_eventset (&event_set);

for (i=0; events[i] != NULL; i++) {
PAPI_event_name_to_code (events[i], &code);
PAPI_add_event (event_set, code);

}

S–0046–10 9

Using the PAPI Cray NPU Component

PAPI_start (event_set);

/* perform work */

memset (values, 0, sizeof(values));
PAPI_stop (event_set, values);

/* process values */
for (i=0; events[i] != NULL; i++) {

printf (" %s = %lld\n", events[i], values[i]);
}

PAPI_cleanup_eventset (event_set);
PAPI_destroy_eventset (&event_set);
PAPI_shutdown ();

return 0;
}

1.4.3 Accessing Aries Network Performance Counters, Configuring Three
Events, and Reading Eight Events

This example demonstrates how to use PAPI_write with Aries configuration
events. Only one event set can be active at a time. This example uses the bin
histogram events.

Example 3. Aries Counters: Configuring Three Events and Reading Eight
Events

/*
* Copyright 2013 Cray Inc. All Rights Reserved.
*/

/* Simple example of accessing Aries network performance counters
* via PAPI. This example configures the histogram bin counter.
* The CRAY_NPU_ACCESS permissions must be set accordingly.
* Only one event set can be running (PAPI_start..PAPI_stop) at a time.
* Collecting and checking all return values has been left out for
* clarity.
*/

#include <papi.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

int
main (int argc, char *argv[])
{

int i;
int code = 0;
int cidx;
int nctrs;
int wr_event_set = PAPI_NULL;
int rd_event_set = PAPI_NULL;

10 S–0046–10

Using the PAPI Cray NPU Component

long long rd_values[8];
long long *wr_values;
struct {

char *ename; /* configuration event:qualifier */
long long value; /* value to set */

} wr_events[] = {
{ "AR_NIC_ORB_CFG_NET_RSP_HIST_1:BIN1_MIN", 1024 },
{ "AR_NIC_ORB_CFG_NET_RSP_HIST_1:BIN2_MIN", 8192 },
{ "AR_NIC_ORB_CFG_NET_RSP_HIST_1:BIN3_MIN", 16384 },
{ NULL, 0x0 }

};
char *rd_events[] = {

"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN01:BIN0_COUNT",
"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN01:BIN1_COUNT",
"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN23:BIN2_COUNT",
"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN23:BIN3_COUNT",
"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN45:BIN4_COUNT",
"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN45:BIN5_COUNT",
"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN67:BIN6_COUNT",
"AR_NIC_ORB_PRF_NET_RSP_HIST_BIN67:BIN7_COUNT",
NULL

};

PAPI_library_init (PAPI_VER_CURRENT);

/* set up the configuration event set */

PAPI_create_eventset (&wr_event_set);

cidx = PAPI_get_component_index ("cray_npu");
nctrs = PAPI_num_cmp_hwctrs (cidx);
wr_values = calloc (nctrs, sizeof(*wr_values));

for (i=0; wr_events[i].ename != NULL; i++) {
PAPI_event_name_to_code (wr_events[i].ename, &code);
PAPI_add_event (wr_event_set, code);
wr_values[i] = wr_events[i].value;

}

PAPI_start (wr_event_set);
PAPI_write (wr_event_set, wr_values);
PAPI_stop (wr_event_set, NULL);

PAPI_cleanup_eventset (wr_event_set);
PAPI_destroy_eventset (&wr_event_set);

/* set up the counting event set configured by the above */

PAPI_create_eventset (&rd_event_set);

for (i=0; rd_events[i] != NULL; i++) {
PAPI_event_name_to_code (rd_events[i], &code);
PAPI_add_event (rd_event_set, code);

}

PAPI_start (rd_event_set);

/* perform work */

S–0046–10 11

Using the PAPI Cray NPU Component

memset (rd_values, 0, sizeof(rd_values));
PAPI_stop (rd_event_set, rd_values);

/* process values */
for (i=0; events[i] != NULL; i++) {

printf (" %s = %lld\n", events[i], values[i]);
}

PAPI_cleanup_eventset (rd_event_set);
PAPI_destroy_eventset (&rd_event_set);
PAPI_shutdown ();

return 0;
}

12 S–0046–10

	Using the PAPI Cray NPU Component
	Using the PAPI Cray NPU Component
	1.1 Prerequisites
	1.2 Enabling Access
	1.3 Programming Tips
	1.4 Examples
	1.4.1 Accessing Gemini Network Performance Counters and Reading T
	1.4.2 Accessing Aries Network Performance Counters and Reading Tw
	1.4.3 Accessing Aries Network Performance Counters, Configuring T

	List of Examples
	Example 1. Gemini Counters: Reading Two Events
	Example 2. Aries Counters: Reading Two Events
	Example 3. Aries Counters: Configuring Three Events and Reading

