(—{ — PG

Using the Igdb Comparative Debugging Feature

S—-0042-20

© 2013 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software” as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray and Sonexion are federally registered trademarks and Active Manager, Cascade, Cray Apprentice2,

Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC,
Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM,

Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2,
Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XEbm, Cray XE6, Cray XE6m, Cray XK6, Cray XK6m,

Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5,, Cray XT5m, Cray XT6,
Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, LibSci, NodeKARE, RapidArray, The Way to Better
Science, Threadstorm, uRiKA, UNICOS/Ic, and YarcData are trademarks of Cray Inc.

GNU is atrademark of The Free Software Foundation. OpenMP is atrademark of OpenMP Architecture Review
Board. PGl isatrademark of The Portland Group Compiler Technology, STMicroelectronics, Inc. UNIX, the“X
device” X Window System, and X/Open are trademarks of The Open Group. All other trademarks are the property
of their respective owners.

RECORD OF REVISION

S-0042—-20 Published March 2013 Supports Cray Debugger Support Toolkit release 2.1.2 running on Cray XE,
Cray XK, and Cray XC30 systems.

Abstract

Using the Igdb Comparative Debugging Feature S-0042-20

This paper introduces the comparative debugging functionality within version 2.0 of | gdb, Cray's new
command line debugger. Comparative debugging technology enables programmers to debug a faulty
program against a working version, by comparing data structures between the two executing programs. A
demonstration utilizing the comparative debugging feature of | gdb to find an error within afaulty version of
the High-Performance Linpack benchmark (HPL) is provided.

Contents

Page
Introduction [1] 7
1.1 The Comparative Debugging Cycle
Compar ative Debugging Demonstration [2] 15
2.1 Staging the Demonstration e e e s 15
2.2 The Comparative Debugging Process — Initial Pass Ce e 17
2.2.1 Locate Entry Point into Code C e e e 17
2.2.2 Specify Resource Requirements and Launch Applications Ce e 18
2.2.3DefineKey Data Structureso 19
2.2.4 Employ Assertions to Compare Data Structures Ce e 19
225BvauateResults L L L Lo 20
2.3 Comparative Debugging — 2nd Pass Ce e e e 20
2.4 Comparative Debugging—3rdPass Lo 23
2.5 Comparative Debugging — 4thPass 25
2.6 Comparative Debugging — 5thPass L. 26
2.7 Comparative Debugging — 6thPass 28
2.8 Comparative Debugging — 7thPass 31
2.9 Comparative Debugging— 8thPass 34
Conclusion [3] 37
Procedures
Procedure1. Initial passof comparative debuggingwithl gdb 8
Examples
Example 1. Compile code with debugging enabled
Example2. Launching applicationsusing| gdb
Example3. Two-dimensional data decomposition scheme Ce e 11
Example4. Useanimperative assertion to compare datastructures 12
Example5. Useadeclarative assertion to compare datastructures 13

S-0042-20 5

Introduction [1]

The functionality of thel gdb command changed completely with version 2.0.
This command line parallel debugger can be used to debug applications compiled
with CCE, PGlI, and GNU Fortran, C, and C++ compilers. Basic operation is
documented in the| gdb(1) man page. Version 2.0 of | gdb aso includes the first
release of Cray's comparative debugging technology. Comparative debugging enables
programmers to compare corresponding data structures between two executing
applications. If the values of the corresponding data structures diverge, an error
may exist and the user is notified. This capability is useful for locating errors that
are introduced when applications are modified through code, compiler, or library
changes, or when running an application on a different scale produces incorrect
results.

In afuture release, Cray Inc. will package its comparative debugging technology
with a graphical user interface (GUI) for greater ease of use. For now, this document
offers an introduction to the concepts and constructs of comparative debugging within
| gdb, including a demonstration of this technology to debug a coding error in the
High Performance Linpack (HPL) benchmark code.

1.1 The Comparative Debugging Cycle

S-0042-20

Comparative debugging assumes there are two versions of an application to be
compared, areference version that is considered correct and a devel opment version
being debugged. The typical comparative debugging cycle involves following the
use of key variables in the two applications, comparing their values, and tracing
them back to their points of definition to refine the area within the development
version where results first diverge. Although every debugging session takes its own
unique path, the initial pass through of comparative debugging with I gdb includes
the following steps.

Using the Igdb Comparative Debugging Feature

Procedure 1. Initial pass of comparative debugging with | gdb
1. Locate Entry Point into Code.

Where in the code does it make sense to begin comparing data structures? Which
data structures must be compared? The user must have an in depth understanding
of the source code in order to select and locate key data structures, determine
comparison points, follow the path of execution, and understand the implications
of the results.

2. Prepare executablefiles.

Both applications will be launched for execution by | gdb, and must be compiled
using the debugging option (- g or - Gn) of the relevant compiler to include
additional debugger information required by | gdb.

Example 1. Compile code with debugging enabled

In this example, two executable files, ver si onl and ver si on2, are created
when the source code filessour cel. f 90 and sour ce2. f 90 are compiled
with debugging enabled.

> ftn -g -0 versionl sourcel.f90
> ftn -g -0 version2 source2.f90

3. Specify resource regquirements and launch applications.

Applications are launched and processor resource requirements are defined by
using thel aunch command. The syntax of the command is:

| aunch [--args "app args' | -a "app_args'] [--aprun-args
"aprun_args' | -g "aprun_args'][--aprun-input "inputfile" | -i
"input_file"] [--env="name=value', - - env="name=value", ...] [--workdir="work path" |

-w="work_path"] $proc_set path _to_executable
Thel aunch command requires the following parameters:

$proc_set Defines a debugger variable and associates it with the number of
ranks in the application. For sequentia applications, $proc_set
isasingle debugger scalar variable. For parallel applications,
$proc_set is a debugger array variable, the size of which
determines the number of application ranks for the application.

Thel aunch command transparently passes the number of ranks
to apr un, through the - n option, to launch applications on
batch systems.

path_to_executable

Specifiesthe path to the application executable. Thisis passed
directly to apr un.

8 S-0042-20

Introduction [1]

S-0042-20

Thel aunch command accepts the following options. Option arguments must be
enclosed within quotation marks, such as" ar gs" .

--args "app_args' | - a "app_args"

Passes app_args to the application executable.
--aprun-args "aprun_args' | - g "aprun_args'

Passes aprun_argsto the apr un command.
--aprun-input "input_file"|-i "input_file"

Redirectsthe st di n of the apr un command to be input_file.
Thisis useful for applications requiring input from st di n.

- - env="name=value’, - - env="name=value’,...

Sets the environment variable (defined by name) to value, for this
apr un session instance. Note that - - env= can be used more
than once to set multiple environment variables.

- -wor kdi r ="work_path" | - w="work_path"

Changes the current working directory, relative to its present
setting where | gdb was invoked, to work_path. Thisis useful
for applications that write filesto the current working directory.
If the - - wor kdi r = option is specified without a path, the
current working directory will be changed to the location of the
application's executable file. By default, if - - wor kdi r = is
not specified, work_path is defined as the directory from where
| gdb was invoked.

Example 2. Launching applications using | gdb

In this example, two ranks of each application, ver si onl and ver si on2,
are launched and associated with the process sets $wor ki ng and $br oken,
respectively.

dbg> | aunch $worki ng{2} versionl
dbg> | aunch $broken{2} version2

. Define key data structures.

In parallel programming, datais typically decomposed and distributed

across numerous application ranks. To perform comparisons of distributed

data structures, each individual piece must be obtained from the ranks and
reconstructed. Inl gdb, a decomposition scheme is created in script mode and
specifiesthe reconstruction of distributed variables into the global representation
of the data by defining four required characteristics: dimensionality, distribution,
process grid, and dimension order. Enter the following command to initiate script

Using the Igdb Comparative Debugging Feature

10

mode and create a decomposition scheme, $scheme_name. Script subcommands
are read until the end subcommand is issued, returning | gdb to interactive
mode. Following are explanations of the decomposition script subcommands.

dbg al | > deconpositi on $scheme name

di nensi on

di stribute

proc_grid

Specifies the size and dimensionality of the global
reconstruction. Each characteristic must have the same
dimensionality as defined by the di mensi on subcommand.

Specifies the distribution type for each dimension of the
reconstruction. Distribution options are:

bl ock

cyclic

Equal-sized chunks of data are assigned to each
rank.

Elements in the dimension are dealt out in round
robin fashion.

a numeric value

asterisk (*)

Representing the blocking factor used to
partition the dimension in a block-cyclic
distribution.

Indicating that this dimension is not distributed
and, therefore, each rank in the global
reconstruction contains all of the dataiin that
dimension.

Definesthe process grid for the reconstruction by specifying the
number of ranks contained in each dimension. If adimensionis
not distributed, the value for that dimension must be defined as

an asterisk (*).

S-0042-20

Introduction [1]

S-0042-20

di m order Definesthe order in which the application ranks are assigned in
each dimension of the process grid for the global reconstruction.
Each local chunk of data obtained from each rank must be placed
into the global reconstruction. To do this, each rank is assigned
alogical position in the process grid for its chunk of data.
When considering n- dimensional distributions, any of the n
dimensions can be assigned sequential numbered ranks, and any
of the other higher order dimensions can be incremented after the
dimension containing sequential ranksisfilled.

di m_or der isdefined by assigning a sequential number from

1 to nto each of the defined distributed dimensions indicating
fastest to slowest varying dimension, respectively. If adimension
is not distributed, the order must be defined as an asterisk

(*). The fastest varying dimension is the dimension assigned
sequential ranks up to its corresponding grid size. The second
fastest varying dimension is incremented after the fastest varying
dimension is completely filled and ranks are again assigned to the
fastest varying dimension. This process continues until all ranks
have been assigned to al of then- dimensions.

Example 3. Two-dimensional data decomposition scheme

This example creates a decomposition scheme for an 8 x 8 array:

dgb al | > deconposition $data_a
> dinension 8,8

> distribute block,*

> proc_grid 4,*

> dimorder 1,*
> end
dgb all >

The first dimension of the array is distributed in a block manner, and the second
dimension is not distributed; therefore, each application rank contains all eight
elements. Thepr oc_gri d definitionindicates that the datais to be distributed
over four ranksin the first dimension and not distributed in the second dimension.
Thus, the local chunk of datafor each rank isa2 x 8 array of data, or two rows
of the data array. Thedi m_or der definition specifiesthat the first dimension

is the fastest, and in this case, the only varying dimension because the second
dimension is not distributed.

The decomposition construct provides a method to reconstruct distributed data
into a global view that can be compared across applications. Instead of writing
thousands of individual assertion statements to conduct rank-wise comparisons of
data variables across application ranks, users can create a decomposition scheme
to globally reconstruct the data automatically.

11

Using the Igdb Comparative Debugging Feature

12

5. Employ assertions to compare data structures.

Assertions, the key construct used in | gdb, define the names of two data
structures that are to be compared. There are two types of assertions available
in | gdb, imperative and declarative.

Imperative assertions allow a user to interactively compare data structures
between the executing applications when they are suspended at user-define
breakpoints. The user can create breakpoints within the two applications before
they are simultaneously executed. When a breakpoint is reached and the
applications are suspended, the user issues aconpar e command to compare the
contents of key data structures at that time.

Example 4. Use an imperative assertion to compare data structures

In this example, the variable Val ue in the reference application "working" is
compared with the variable Val ue in the development application "broken".

dgb al | > conpare $worki ng:: Val ue = $broken: : Val ue
dgb all >

The process of debugging using only imperative assertions would involve
numerous iterations of defining breakpoints, resuming or restarting the
applications, and comparing the contents of key data structures. If the user wants
to compare the results of computations within aloop, the conpar e command
must be manually invoked for each iteration of the loop when a breakpoint is
reached. Thisis obvioudy not the most efficient method.

Declarative assertions allow a user to state a set of spatial and temporal
conditions that must be satisfied for the data structures within the devel opment
version to be considered correct. In| gdb, declarative assertions are defined

by theassert subcommand within an assertion script, and state that a data
structure (the spatial condition) at a specific line (the temporal condition) in the
development application should contain the same value as the corresponding data
structure, at a specific line, in the reference application. An assertion script can
contain as many assertions as needed.

The bui I d command initiates assertion script mode, subcommands are accepted
until the end subcommand is entered to return | gdb to interactive mode, after
which thest art command is used to initiate execution of the assertion script.
The script will continue to successful completion or until the assertion interpreter
halts due to assertion failures or application errors.

S-0042-20

Introduction [1]

dbg all> build $test

Example 5. Use a declarative assertion to compare data structures

The assertion script in this example instructs | gdb to compare the value of the
variable st or 1 at line 234 of sour cel. f 90 for the application associated
with the process set $wor ki ng with the variable st or 1 at line 187 of

sour ce2. f 90 for the application associated with the process set $br oken.

> assert $working::storl@sourcel. f90":234 = $broken::storl@ source2.f90": 187

> end
dbg al |l >

S-0042-20

| gdb will create breakpoints in both applications at the respective line numbers,
and will compare the specified variables when the assertion script is executed.

If the comparison does not detect an error, the applications are automatically
resumed; otherwise, execution of the applications is halted and the differenceis
reported.

. Evaluate results and repeat debugging process, as necessary.

Results from the assertion script provide clues to the user asto other areas of the
application code that should be investigated. Tracing the path of data structure
calculations to find where results diverge will likely require multiple iterations
of the comparative debugging cycle.

With this preliminary release of the comparative debugging feature, it is
necessary to quit | gdb and then restart it, in order to release the applications and
associated variables, making it possible to relaunch the applications and begin
another debugging cycle. Thiswill be resolved in afuture release.

13

Using the Igdb Comparative Debugging Feature

14 S-0042-20

Comparative Debugging Demonstration [2]

This demonstration illustrates use of the comparative debugging capabilities of

| gdb to detect and analyze data variances between two applications, areference
version and a development version, that differ in results. The High-Performance
Linpack (HPL) benchmark, part of the HPC Challenge Benchmark set, is the test
application. All necessary files can be found in the deno directory of the | gdb
release package. Follow the directions in the READVE file to properly set up
and build the demo. For further information about the HPL benchmark, go to:
http://icl.cs.utk.edu/hpcc/index.html.

2.1 Staging the Demonstration

Two binaries are compiled for the HPL demonstration, hpcc_br oken and
hpcc_wor ki ng. hpcc_br oken isbuilt from HPL source into which a bug was
deliberately introduced, while hpcc_wor ki ng isbuilt from the original HPL source
code. Both executables are launched using the apr un command requesting four PEs
each; each PE mapsto one MPI (Message Passing Interface) rank. Upon completion
of the run, an output fileis generated containing results of the run.

Note: The scale of thisdemo issmall for practical considerations. The techniques
used are applicable when running on thousands of processors.

S-0042-20 15

http://icl.cs.utk.edu/hpcc/index.html

Using the Igdb Comparative Debugging Feature

Run hpcc_br oken:

% aprun -n 4 ./hpcc_broken

The generated output file, hpccout f . t Xt , contains a failure message. The

following isapartia listing from that log:

- The matrix A is randomy generated for each test.
- The follow ng scal ed residual check will be conputed:
|| Ax-b[|_oo / (eps * (|| x [[]_oo™* || Af[[_oo+ || b]|]_o0o) * N)

- The relative nmachine precision (eps) is taken to be 1.110223e-16
- Conputational tests pass if scaled residuals are |less than 16.0
TV N NB P Q Ti me G| ops
VWR11C2R4 1000 80 2 2 0.05 1.306e+01
|| Ax-b| | _oo/ (eps*(||Al| _oo*||x||_oo+||b||_00)*N)= 283705609311. 4508057 FAI LED
[|Ax-b]| o0= 132. 675817

|| Al _oo . = 262. 773468

[1A]_1 = 263. 865287

|| x]]_oo . = 16. 028046

[]x]]_1 = 3689. 284539

[1b]| _oo . = 0. 499776

Fi ni shed 1 tests with the followi ng results:

0 tests conpleted and passed residual checks,
1 tests conpleted and failed residual checks,
0 tests skipped because of illegal input val ues.

End of Tests.

16

S-0042-20

Comparative Debugging Demonstration [2]

Run hpcc_wor ki ng:
% aprun -n 4 ./hpcc_working

The output does not contain the failure message. The following is apartia listing
from the log file:
- The matrix A is randomy generated for each test.

- The follow ng scal ed residual check will be conputed:
|| Ax-b[|_oo / (eps * (|| x [[]_oo™* || Af[[_oo+ || b]|]_o0o) * N)

- The relative nmachine precision (eps) is taken to be 1.110223e-16
- Conputational tests pass if scaled residuals are |less than 16.0
TV N NB P Q Ti me G| ops
VWR11C2R4 1000 80 2 2 0.05 1.337e+01
| | Ax-Db| | _oo/ (eps* (|| Al|_oo*||x||_oo+||b]]|_o0)*N) = 0.0054597 PASSED
Fi ni shed 1 tests with the following results:

1 tests conpleted and passed resi dual checks,
0 tests conpleted and fail ed residual checks,
0 tests skipped because of illegal input val ues.

End of Tests.

2.2 The Comparative Debugging Process — Initial Pass

The HPL benchmark is a good choice for a debugging demonstration asits size and
complexity provides sufficient challenges to make the debugging process interesting.
Asyou will see, after theinitia pass through the debugging steps described earlier,
several iterations of defining key data structures, employing assertions and evaluating
results (step 4 through step 6) are needed to follow the clues back to the origin of
the bug.

Important: In many of the examples within this demonstration, some command
lines are split across two lines for publishing purposes only. | gdb does not
interpret commands split across multiple lines.

2.2.1 Locate Entry Point into Code

To debug this problem, alogica entry point into the HPL code must first be
determined. The FAI LED message in the hpcc_br oken output is being generated
by the following section of code from the source fileHPL _pdt est . c:

429 HPL_fprintf(TEST->outfp, "%%6.7f%%\n",
430 "|| Ax-b|| _ool (eps* (|| Al| _oo*||x||_oo+||bl|]_o00)*N=", residl,
431 . ", (residl < TEST->thrsh ? "PASSED' : "FAILED'));

S-0042-20 17

Using the Igdb Comparative Debugging Feature

This checksto seeif the variabler esi d1 islessthan the value of TEST- >t hr sh.
If so, PASSED is printed to the output file, otherwise FAI LED s printed. Something
must be different with the calculation of r esi d1, online 418 of HPL _pdt est . c,
in the broken version of the code:

418 residl = resid0 / (TEST->epsil * (Anorml * Xnorm + Bnorml) * (double)(N));

Therefore, the focus is on the variables going into the calculation of r esi d1.

2.2.2 Specify Resource Requirements and Launch Applications

After loading thecr ay- | gdb module and invoking | gdb, the first task isto launch
both the broken and working versions of the HPL application using thel aunch
command. As described earlier, | aunch associates an instance of an application
with an internal process set representation. Therefore, in the following output,
launching four ranks of the hpcc_br oken binary associates them with the process
set $br oken.

Note: Commands shown are available in the script files found in the
hpcc_scri pt s directory. Scripts can be used inside| gdb using the sour ce
command.

dbg all > |l aunch $broken{4} hpcc_broken

Starting al ps application, please wait...

Creati ng MRNet communi cation network. ..

Wai ting for debug servers to attach to MRNet comuni cations network. ..
Ti meout in 60 seconds. Please wait for the attach to conplete.
Nurmber of dbgsrvs connected: [1]; Tinmeout Counter: [O0]

Nunber of dbgsrvs connected: [1]; Tinmeout Counter: [1]

Nurmber of dbgsrvs connected: [4]; Timeout Counter: [0]

Fi nali zi ng setup. ..

Launch conpl ete.

[0..3]Initial breakpoint, main at /lus/.../.../src/hpcc.c:18
dgb all >

Similarly, launching four ranks of the hpcc_wor ki ng binary associates them with
the process set $wor ki ng. Additionally, the error tolerance level is set for the
assertion scripts when comparing floating point values.

dbg all > | aunch $worki ng{4} hpcc_working

Starting al ps application, please wait...

Creati ng MRNet communi cation network. ..

Waiting for debug servers to attach to MRNet comuni cations network. ..
Ti meout in 60 seconds. Please wait for the attach to conplete.
Nunber of dbgsrvs connected: [1]; Tinmeout Counter: [0]

Number of dbgsrvs connected: [1]; Timeout Counter: [1]

Nurmber of dbgsrvs connected: [4]; Timeout Counter: [0]

Fi nali zi ng setup. ..

Launch conpl ete.

[0..3]Initial breakpoint, main at /lus/.../.../src/hpcc.c:18
dbg all> set error 1.0e-14 1.0e-13 absol ute

dbg al |l >

18 S-0042-20

Comparative Debugging Demonstration [2]

2.2.3 Define Key Data Structures

Both applications are now launched and held immediately before execution is passed
totheir mai n() routines. The next task is to create a decomposition scheme that will
make rank-wise comparisons of the scalar data easier. In this case, the decomposition
isnamed $chk1 and is defined with atotal size of four data variables distributed in a
block fashion over agrid of four ranks. This means that when $chk1 isused in
conjunction with a scalar variable in either of the two invoked process sets, it expects
asingle scalar data variable is present in each rank, because there are atotal of four
data variables distributed over four ranks.

dbg al | > deconposition $chkl
di nrension 4
di stribute bl ock
proc_grid 4
di morder 1
end
bg all>

Q V VYV VYV

2.2.4 Employ Assertions to Compare Data Structures

Recall from Locate Entry Point into Code on page 17 that the following line of code
produces different results in the two versions of the application.

418 residl = resid0 / (TEST->epsil * (Anorm * Xnormli + Bnorml) * (double)(N));

Therefore, an assertion script is built and executed to compare the variables that go
into ther esi d1 calculation.

dbg all> build $residl
> assert $chkl{$broken::resi dO@HPL_pdtest.c": 418} = $chkl{$working::resi dO@HPL_pdtest.c": 418}
> assert $chk1{$broken:: TEST->epsi| @HPL_pdtest.c": 418} =
$chk1{ $wor ki ng: : TEST- >epsi | @HPL_pdt est. c": 418}
assert $chk1{$broken:: Anorm @HPL_pdtest.c":418} = $chkl{$worki ng:: Anorm @ HPL_pdt est.c": 418}
assert $chkil{$broken:: Xnorm @HPL_pdtest.c": 418} = $chkl{$worki ng:: Xnorm @HPL_pdt est.c": 418}
assert $chk1{$broken::Bnorm @HPL_pdtest.c":418} = $chkl{$worki ng:: Bnorm @ HPL_pdtest.c": 418}
assert $chkil{$broken:: N@ HPL_pdtest.c": 418} = $chkl{$worki ng: : N@ HPL_pdt est.c": 418}
> end
Assertion script $residl conpil ed.
dbg all> start $residl
***Starting execution of applications
dbg all >
*** Difference found between scal ar(resid0) and scalar(resid0)! *** In AssertID: 1
*** Difference found between scal ar (Xnorm) and scalar(Xnorm)! *** |n AssertlD: 4

V V. V V

*** The interpreter has halted.
Assertion script $residl conplete.
Successful Assertion Set Iterations: 0O
Total Passed Assertions: 4

Total Warned Assertions: 0

Total Failed Assertions: 2

Assertion summary:

S-0042-20 19

Using the Igdb Comparative Debugging Feature

AssertID 1
AssertI D 2
Assert| D 3:
Assert| D 4:
AssertI D 5
AssertI D 6

Pass:
Pass:
Pass:
Pass:
Pass:
Pass:

P ORRO

1

Warn: O Fail: 1
Warn: 0 Fail: O
Warn: O Fail: O
Warn: 0 Fail: 1
Warn: O Fail: O
Warn: 0 Fail: O

khkkhkkhkhkhkhhkhhhhkhhhkhhhhhkhhkhhkhkhkhkxx

Current |ocation:

wor ki ng[0. .3]:
broken[0. . 3]:

dbg all >

Application halted in HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c: 418

Application halted in HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:418

A deviation in the datais found causing the assertion interpreter to halt execution.

Note: The amount of output above istypical after an assertion run. For brevity
after future runs, nonessential information will be removed.

2.2.5 Evaluate Results

After running the assertion script, $r esi d1, it isdetermined that variablesr esi dO
and Xnor m deviate between the two applications. Therefore, it is safe to ignore
the other variables that went into the calculation of r esi d1 and focusonr esi dO
and Xnor m .

2.3 Comparative Debugging — 2nd Pass

20

Because Xnor i deviates, an assertion script must be built to compare every variable
that goesinto its calculation. Xnor ml isdefinedin the source fileHPL _pdt est . ¢
asfollows:

357 rdata->Xnorm =
358 Xnorm = HPL_pdlange(GRID, HPL_NORM 1, 1, N, NB, mat. X, 1);

Variables GRI D, N, and NB are straightforward to compare, but the matrix mat . X
is abit more complicated to compare and is done separately in the assertion script
$Xnorm _mat . X.

Note: With this preliminary release of the comparative debugging feature, it is
necessary to quit | gdb and then restart it, in order to release the applications and
associated variables, thus making it possible to relaunch the applications and run
another test. For brevity, rather than include these stepsin every iteration, it will
simply be noted as, "Restart and Relaunch."

S-0042-20

Comparative Debugging Demonstration [2]

dgb all> Restart and Rel aunch

dbg al | > deconposition $chk2

> di mensi on 4

> distribute bl ock

> proc_grid 4

> dimorder 1

> end

dbg all> build $Xnormni

> assert $chk2{$broken:: *GRI D@ HPL_pdt est.c": 357} = $chk2{$wor ki ng: : *CRI D@ HPL_pdt est. c": 357}
> assert $chk2{$broken:: N@HPL_pdtest.c": 357} = $chk2{$wor ki ng: : N@ HPL_pdt est . c": 357}

> assert $chk2{$broken: : NB@HPL_pdtest.c": 357} = $chk2{$worki ng: : NB@ HPL_pdt est.c": 357}

> assert $chk2{$broken::*GR D@ HPL_pdt est.c": 359} = $chk2{$wor ki ng: : *GRI D@ HPL_pdt est . c": 359}
> assert $chk2{$broken: : N@HPL_pdtest.c": 359} = $chk2{$worki ng: : N@ HPL_pdt est.c": 359}

> assert $chk2{$broken:: NB@ HPL_pdt est.c": 359} = $chk2{$wor ki ng: : NB@ HPL_pdt est . c": 359}

> end

Assertion script $Xnorm conpil ed.

dbg all> start $Xnorm

***Starting execution of application

*** The interpreter has halted. ***
Assertion script $Xnorm conplete.
Successful Assertion Set Iterations: 1
Total Passed Assertions: 6

Total Warned Assertions: 0

Total Failed Assertions: 0O

There are no deviations before or after the call to Xnor m ; therefore, all of these
variables can safely be ignored.

mat . Xisthe 1 by nqg solution vector x. As shown in the following section of code,
this pointsto aregion inside of mat . Ato avoid unneeded reallocation of memory.

187 mat. A (doubl e *)HPL_PTR(vptr,
188 ((size_t)(ALGO >align) * sizeof(double)));
189 mat.X = Mtr(mat. A, O, mat.nq, mat.ld);

Usel gdb to break at line 357 (prior to the calculation of Xnor m) and print the
value of nq.

dgb all> Restart and Rel aunch

dbg al | > break HPL_pdtest.c: 357

broken[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, |ine 357
wor ki ng[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 357
dbg al | > conti nue

wor ki ng[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c: 357
broken[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c: 357
dbg all> print nq

broken[1, 3]: 480

broken[0, 2] : 520

wor ki ng[1, 3]: 480

wor ki ng[0, 2] : 520

dbg al |l >

Thinking about this in terms of the global problem, one might expect the global
solution vector x to be 1 by 1000; however, a reconstruct of what each rank is
pointing at, indicates that there is enough "space" for a 1 by 2000 vector. Note
that mat . X pointsinto the local A matrix; however, to compare only the bits that
HPL_pdl ange operates on (as on line 358 of HPL_pdt est . ¢), it must be
determined which ranks it will use to calculate the norm value.

S-0042-20 21

Using the Igdb Comparative Debugging Feature

The code for the function HPL _pdl ange, shows that HPL_NORM 1 only

operates for ranks with np greater than 0. The next step is to set a break

at HPL_pdt est . c: 357, continue to the breakpoint, set a breakpoint at

HPL_pdl ange. c: 164 (the start of the HPL_NORM 1 calculation) and then issue a
print onnp, to find the following for both $wor ki ng and $br oken:

dbg all > Restart and Rel aunch

dbg al | > break HPL_pdtest.c: 357

broken[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, |ine 357.

wor ki ng[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 357.

dbg al | > conti nue

broken[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c: 357
wor ki ng[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c: 357
dbg al | > break HPL_pdl ange. c: 164

broken[0..3]: Breakpoint 2: file ./lus/.../src/pauxil/HPL_pdlange.c, |ine 164.
wor ki ng[0..3]: Breakpoint 2: file /lus/.../src/pauxil/HPL_pdlange.c, |line 164.
dbg al | > conti nue

broken[0..3]: Breakpoint 2, HPL_pdl ange at /lus/.../src/pauxil/HPL_pdl ange. c: 164
wor ki ng[0..3]: Breakpoint 2, HPL_pdlange at /lus/.../src/pauxil/HPL_pdl ange. c: 164
dbg all> print np

broken[2..3]: O

broken[0..1]: 1

working[2..3]: O

working[O..1]: 1

dbg al |l >

This means that rank 0 and rank 1 hold the actual information for mat . X, and only
these two ranks must be compared. To do this, the dereferenced mat . X pointer
must be cast to the proper dimension so that | gdb is able to grab the amount of
data expected, because C language does not provide a way to determine this directly
from the pointer alone.

dbg all > Restart and Rel aunch
dbg all> build $Xnorm _matX
> assert $broken{0}:: (doubl e[520]) *mat . X@ HPL_pdt est.c": 357 =
$wor ki ng{ 0}: : (doubl e[520]) *mat . X@ HPL_pdt est . c": 357
> assert $broken{0}:: (doubl e[520]) *mat . X@ HPL_pdt est.c": 359 =
$wor ki ng{0}: : (doubl e[520]) *mat . X@ HPL_pdt est . c": 359
assert $broken{1}:: (doubl e[480])*mat. X@ HPL_pdtest.c": 357 =
$wor ki ng{1}: : (doubl e[480]) *mat . X@ HPL_pdt est. c": 357
assert $broken{1}:: (doubl e[480])*mat. X@HPL_pdtest.c": 359 =
$wor ki ng{1}: : (doubl e[480]) *mat . X@ HPL_pdt est . c": 359

\

\

> end

Assertion script $Xnorm _mat X conpi |l ed.

dbg all> start $Xnorm _mat X

***Starting execution of application

*** Difference found between (doubl e[520])*nmat. X and (doubl e[520])*mat. X! *** |n AssertID: 1
*** Difference found between (doubl e[480])*nmat. X and

(doubl e[480])*mat . X! *** |n AssertID: 3

After running $Xnor m _mat X, itisfound that mat . X isdifferent before the call to
Xnor il ; therefore, the original source of deviation must occur earlier.

22 S-0042-20

Comparative Debugging Demonstration [2]

2.4 Comparative Debugging — 3rd Pass

In addition to Xnor m , $r esi dO was also found to be a deviating variable in our
original calculation of r esi d1; therefore, every variable that goes into the function
that calculates its value must be checked.

407 rdata- >Rnorm =
408 resid0 = HPL_pdlange(GRID, HPL_NORM I, N, 1, NB, Bptr, mat.ld);

Bpt r isabit more complicated to compare, and is done separately in the assertion
script $r esi dO_Bpt r.

dbg all> Restart and Rel aunch
dbg al | > deconposition $chk3
> di nensi on 4

di stribute bl ock

proc_grid 4

di morder 1

>

>

>

> end
dbg all >
> assert
> assert
> assert
> assert
> assert
> assert
> assert
> assert
> end

bui Il d $resido

$chk3{ $br oken
$chk3{ $br oken:
$chk3{ $br oken:
$chk3{ $br oken
$chk3{ $br oken:
$chk3{ $br oken:
$chk3{ $br oken:
$chk3{ $br oken

:*GRI D@ HPL_pdt est. ¢c": 407} = $chk3{$wor ki ng: : *GRI D@ HPL_pdt est. c": 407}

N@ HPL_pdt est. c": 407} = $chk3{$worki ng: : N@ HPL_pdt est . c": 407}
NB@ HPL_pdt est. c": 407} = $chk3{$worki ng: : NB@ HPL_pdt est. c": 407}

cmat. | d@HPL_pdtest.c": 407} = $chk3{$working::nmat.| d@HPL_pdtest.c": 407}

*CRI D@ HPL_pdtest. c": 409} = $chk3{$wor ki ng: : * GRI D@ HPL_pdt est . c": 409}
N@ HPL_pdt est. c": 409} = $chk3{$worki ng: : N@ HPL_pdt est . c": 409}
NB@ HPL_pdt est. c": 409} = $chk3{$worki ng: : NB@ HPL_pdt est . c": 409}

cmat. | d@HPL_pdtest.c": 409} = $chk3{$working::mat.| d@ HPL_pdt est.c": 409}

Assertion script $resid0 conpiled

dbg all >

start $resid0

***Starting execution of application
*** The interpreter has halted. ***

Script $residO conplete.
Assertion Set
Total Passed Assertions
Total Warned Assertions
Total Failed Assertions

Successf ul

S-0042-20

Iterations: 1
8
0
0

There are no deviations before or after the call to $r esi dO; therefore, it is safe to
ignore all of these variables and move on to check Bpt r .

367 Bptr = Mtr(mat. A, 0, nq, mat.ld);

23

Using the Igdb Comparative Debugging Feature

Bpt r isthe global N by 1 b matrix, and also pointsto aregion inside nat . Ato
avoid unnecessary reallocation of memory. The next step is to insert a break point
at HPL_pdt est . c: 407, continue to the breakpoint, set another breakpoint at
HPL_pdl ange. c: 200 (found at the start of the HPL_NORM | calculation) and
thenissueapri nt command for np and nq.

dbg al | > break HPL_pdtest.c: 407

break HPL_pdtest.c: 407

broken[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, |ine 407

wor ki ng[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, |ine 407
dbg al | > conti nue

wor ki ng[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c: 407
broken[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c: 407
dbg al | > break HPL_pdl ange. c: 200

broken[0..3]: Breakpoint 2: file /lus/.../src/pauxil/HPL_pdlange.c, line 200
wor ki ng[0..3]: Breakpoint 2: file /lus/.../src/pauxil/HPL_pdlange.c, |ine 200
dbg al | > conti nue

broken[0..3]: Breakpoint 2, HPL_pdl ange at /lus/.../src/pauxil/HPL_pdl ange. c: 200
wor ki ng[0..3]: Breakpoint 2, HPL_pdlange at /lus/.../src/pauxil/HPL_pdl ange. c: 200
dbg all> print np

broken[2..3]: 480

broken[0..1]: 520

wor ki ng[2..3]: 480

wor ki ng[0..1]: 520

dbg all> print nq

broken[1,3]: O

broken[0,2]: 1

working[1,3]: O

working[0,2]: 1

This means that ranks 0 and 2 hold the information for Bpt r , and only these two
ranks need to be compared. Rank 0 contains 520 elements of b, and rank 2 contains
480 elements of b. Aswith mat . X, the dereferenced Bpt r pointer must be cast

to the proper dimension so that | gdb is able to grab the amount of data expected,
because C language does not provide away to determine this directly from a pointer
alone.

dbg all > Restart and Rel aunch
dbg all> build $resid0_Bptr
> assert $broken{O0}:: (doubl e[520]) *Bptr @ HPL_pdtest.c": 407 =
$wor ki ng{ 0} : : (doubl e[520]) *Bptr @ HPL_pdt est . c": 407
> assert $broken{0}:: (doubl e[520]) *Bptr @ HPL_pdtest.c": 409 =
$wor ki ng{ 0}: : (doubl e[520]) *Bptr @ HPL_pdt est . ¢": 409
> assert $broken{2}:: (doubl e[480])*Bptr @HPL_pdtest.c": 407 =
$wor ki ng{ 2} : : (doubl e[480]) *Bptr @ HPL_pdt est . c": 407
assert $broken{2}:: (doubl e[480])*Bptr @HPL_pdtest.c": 409 =
$wor ki ng{ 2} : : (doubl e[480]) *Bptr @ HPL_pdt est. c": 409

\

> end

Assertion script $residO_Bptr conpil ed.

dbg all> start $resid0_Bptr

***Starting execution of application

*** Difference found between (doubl e[520])*Bptr and (doubl e[520])*Bptr! *** |n AssertID:2
*** Difference found between (doubl e[480])*Bptr and (doubl e[480])*Bptr! *** In AssertlD: 4

After running $r esi dO_Bpt r itisfound that Bpt r is different before the call for
resi dO and, therefore, the original source of deviation must occur earlier.

24 S-0042-20

Comparative Debugging Demonstration [2]

2.5 Comparative Debugging — 4th Pass

At this point, it is known that both mat . X and Bpt r deviate at some point in the
code; however, mat . X deviates at an earlier point (HPL_pdt est . c: 357) than
Bpt r (HPL_pdt est. c: 407). Note that, this does not imply that Bpt r is not
also deviating at the point mat . X was checked, but it does suggest that mat . Xis
deviating at an earlier point. Comparative debugging ignores the control flow as much
aspossible, and it is best practice to always try to work backwardsin time as quick as
possible to discover the deviation.

By examining the code, it isfound that mat . X isoriginally pointed to at line 188. It
appears that line 189 generates the entire A matrix, into which mat . Xis pointing.
The value of mat . X should be checked immediately after it is generated.

186 mat. A = (double *)HPL_PTR(vptr,

187 ((size_t)(ALGO >align) * sizeof(double)));

188 mat. X = Mutr(mat. A, 0, mat.ng, mat.ld);

189 HPL_pdmatgen(GRID, N, N+1, NB, mat.A, mat.ld, HPL_I SEED);

The following codes shows that the mat struct is being passed into the
HPL_pdgesv function at line 200.

198 HPL_ptiner_boot(); (void) HPL_barrier(GRID->all_conm);
199 HPL_ptiner(0);

200 HPL_pdgesv(GRID, ALGO &mat);

201 HPL_ptiner(0);

It is not known whether mat . X is going to be used inside HPL _pdgesv, but it
should be checked before and after this function, just to be safe. There does not
appear to be any other locations where mat . X is used before line 357.

dbg all > Restart and Rel aunch

dbg all> build $pdtest_mat X

> assert $broken{0}:: (doubl e[520]) *mat . X@ HPL_pdtest.c": 198 =

$wor ki ng{0}: : (doubl e[520]) *mat . X@ HPL_pdt est . c": 198

>assert $broken{0}:: (doubl e[520]) *mat . X@ HPL_pdt est.c": 200 =
$wor ki ng{ 0} : : (doubl e[520]) *nat . X@ HPL_pdt est. c": 200

assert $broken{0}:: (doubl e[520])*mat . X@ HPL_pdt est.c": 201 =
$wor ki ng{0}: : (doubl e[520]) *mat . X@ HPL_pdt est . c": 201

> assert $broken{1}:: (doubl e[480])*mat. X@HPL_pdtest.c":198 =
$wor ki ng{1}: : (doubl e[480]) *mat . X@ HPL_pdt est . c": 198

assert $broken{1}:: (doubl e[480])*mat. X@ HPL_pdtest.c": 200 =
$wor ki ng{ 1} : : (doubl e[480]) *nat . X@ HPL_pdt est. c": 200

assert $broken{1}:: (doubl e[480])*mat. X@ HPL_pdtest.c": 201 =
$wor ki ng{1}: : (doubl e[480]) *mat . X@ HPL_pdt est . c": 201

\

\

\

> end

Assertion script$pdtest_mat X conpil ed.

dbg all> start $pdtest_mat X

***Starting execution of application

*** Difference found between (doubl e[520])*mat. X and (doubl e[520])*mat. X! *** |n AssertID: 3
*** Difference found between (doubl e[480])*nat. X and

(doubl e[480])*mat . X! *** | n AssertID: 6

S-0042-20 25

Using the Igdb Comparative Debugging Feature

After running $pdt est _mat X, it isfound that lines 198 and 200 do not deviate;
however, adeviation of mat . Xisdetected at line 201. Therefore, mat . X isdeviating
somewhereinside HPL_pdgesv, and this function must be examined more closely.

2.6 Comparative Debugging — 5th Pass

Although it is known hat the call to HPL_pdgesv iscausing deviation on mat . X,
an important first check is to determine whether the arguments going into the function
(GRI D, ALGO, and nat) are matching.

dbg all> Restart and Rel aunch

dbg al | > build $pdgesv_args

> assert $chk4{$broken:: *GRI D@ HPL_pdt est. c": 200} $chk4{ $wor ki ng: : *GRI D@ HPL_pdt est . c": 200}
> assert $chk4{$broken:: * ALGO@ HPL_pdt est.c": 200} = $chk4{$wor ki ng: : *ALGO@ HPL_pdt est . c": 200}
> assert $chk4{$broken:: nat @HPL_pdtest.c": 200} = $chk4{$worki ng: : mat @ HPL_pdt est. c": 200}

> end

Assertion script $pdgesv_args conpil ed.

dbg al |l > start $pdgesv_args

***Starting execution of application

*** The interpreter has halted. ***

Assertion script $pdgesv_args conplete.

Successful Assertion Set Iterations: 1

Total Passed Assertions: 3

Total Warned Assertions: 0

Total Failed Assertions: O

No differences are detected. Next, HPL _pdgesv is examined.

97 if(A->n <=0) return;

98

99 A->info = 0O;

100

101 if((ALGO->depth == 0) || (GRID->npcol ==1))
102 {

103 HPL_pdgesvO(GRID, ALGO, A);

104 }

105 el se

106 {

107 HPL_pdgesvK2(GRID, ALGO, A);

108 }

109/ *

110 * Sol ve upper triangular system

111 */

112 if(A->info == 0) HPL_pdtrsv(GRID, A);
113/ *

114 * End of HPL_pdgesv

115 */

26 S-0042-20

Comparative Debugging Demonstration [2]

dbg all >
dbg al |l >
> assert
> assert
> assert
> assert
> assert
> assert
> assert
> assert
> assert

> assert

> end

Thisis awrapper for three function calls. The next step is to create assertions for
mat . X at each of these. Note that this function transforms the symbolic mat name
into A.

Restart and Rel aunch
bui | d $pdgesv_mat X
$br oken{0}: : (doubl e[520]) * A. X@ HPL_pdgesv.c": 97 =
$wor ki ng{0}: : (doubl e[520]) *A. X@ HPL_pdgesv. c": 97
$br oken{0}: : (doubl e[520]) *A. X@ HPL_pdgesv.c": 103 =
$wor ki ng{ 0} : : (doubl e[520]) *A. X@ HPL_pdgesv. c": 103
$br oken{0}:: (doubl e[520]) *A. X@ HPL_pdgesv. c": 107 =
$wor ki ng{0}: : (doubl e[520]) *A. X@ HPL_pdgesv. c": 107
$br oken{0}: : (doubl e[520]) *A. X@ HPL_pdgesv.c": 112 =
$wor ki ng{0}: : (doubl e[520]) *A. X@ HPL_pdgesv. c": 112
$br oken{0}: : (doubl e[520]) *A. X@ HPL_pdgesv. c": 115 =
$wor ki ng{ 0} : : (doubl e[520]) *A. X@ HPL_pdgesv. c": 115
$broken{1}:: (doubl e[480]) *A. X@ HPL_pdgesv.c": 97 =
$wor ki ng{ 1} : : (doubl e[480]) * A. X@ HPL_pdgesv. c": 97
$br oken{1}:: (doubl e[480]) *A. X@ HPL_pdgesv. c": 103 =
$wor ki ng{1}: : (doubl e[480]) *A. X@ HPL_pdgesv. c": 103
$br oken{1}: : (doubl e[480]) *A. X@ HPL_pdgesv. c": 107 =
$wor ki ng{1}: : (doubl e[480]) * A. X@ HPL_pdgesv. c": 107
$broken{1}:: (doubl e[480]) *A. X@ HPL_pdgesv.c": 112 =
$wor ki ng{1}:: (doubl e[480]) * A. X@ HPL_pdgesv. c": 112
$br oken{1}:: (doubl e[480]) *A. X@ HPL_pdgesv. c": 115 =
$wor ki ng{1}: : (doubl e[480]) *A. X@ HPL_pdgesv. c": 115

Assertion script $pdgesv_nat X conpil ed.

dbg all >
***Starti

start $pdgesv_nat X
ng execution of application

*** Difference found between (doubl e[520])*A. X and (doubl e[520])*A. X! *** |n AssertID:5
*** Difference found between (doubl e[480])*A X and (doubl e[480])*A X! *** |n AssertlD: 10

*** The i

nterpreter has halted. ***

Assertion script $pdgesv_nat X conpl ete.
Successful Assertion Set Iterations: O
Total Passed Assertions: 6

Total War
Tot al Fai

ned Assertions: 0O
| ed Assertions: 2

Assertion sunmary:

Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D

1: Pass: 1 Warn: O Fail: O
2. Pass: 0 Warn: O Fail: O
3: Pass: 1 Warn: O Fail: O
4. Pass: 1 Warn: 0 Fail: O
5. Pass: 0 Warn: O Fail: 1
6: Pass: 1 Warn: O Fail: O
7. Pass: 0 Warn: 0 Fail: O
8. Pass: 1 Warn: O Fail: O
9: Pass: 1 Warn: O Fail: O
10: Pass: O Warn: O Fail: 1

R S S O S

S-0042-20

The assertion at line 103 is never hit; therefore, it is not a part of the valid control flow
for the way this code is compiled. All assertions except for line 115 match. This
means that the deviation for A. X occursin the HPL_pdt r sv function that solves
the upper triangular system. At this point, the other input, A. A, should be checked to
ensure that thisis not deviating at an earlier point inside this function.

27

Using the Igdb Comparative Debugging Feature

It is known that the total dimension of Ais N by N+1; however, in the code's
comments it states that every process holds onto an | d by ng chunk of A. For process
0, Ais520 by 521, and for process 1, Ais 520 by 481. Assertionsfor A. A can be
created in the same fashion as was done for A. X to check the A matrix at different
points in the control flow. Because line 103 is never hit, this assertion can be omitted
for our A matrix assertion script.

dbg all > Restart and Rel aunch
dbg all> build $pdgesv_nat A
> assert $broken{O0}:: (doubl e[520] [520]) *A. A@ HPL_pdgesv.c": 97 =
$wor ki ng{ 0} : : (doubl e[520] [520]) * A. A@ HPL_pdgesv. c": 97
> assert $broken{0}:: (doubl e[520] [520]) *A. A@ HPL_pdgesv. c": 107 =
$wor ki ng{ 0}: : (doubl e[520] [520]) *A. A@ HPL_pdgesv. c": 107
> assert $broken{0}:: (doubl e[520][520]) *A. A@ HPL_pdgesv.c": 112 =
$wor ki ng{ 0}: : (doubl e[520] [520]) *A. A@ HPL_pdgesv. c": 112
> assert $broken{0}:: (doubl e[520] [520]) *A. A@ HPL_pdgesv.c": 115 =
$wor ki ng{ 0} : : (doubl e[520] [520]) *A. A@ HPL_pdgesv. c¢": 115
> assert $broken{1}:: (doubl e[520][480])*A. A@ HPL_pdgesv.c":97 =
$wor ki ng{1}:: (doubl e[520] [480]) *A. A@ HPL_pdgesv. c": 97
> assert $broken{1}:: (doubl e[520][480]) *A. A@ HPL_pdgesv.c": 107 =
$wor ki ng{1}:: (doubl e[520] [480]) *A. A@ HPL_pdgesv. c": 107
> assert $broken{1}:: (doubl e[520][480]) *A. A@ HPL_pdgesv.c": 112 =
$wor ki ng{1}: : (doubl e[520] [480]) *A. A@ HPL_pdgesv. c": 112
> assert $broken{1}:: (doubl e[520][480])*A. A@ HPL_pdgesv.c": 115 =
$wor ki ng{ 1} : : (doubl e[520] [480]) *A. A@ HPL_pdgesv. c": 115
> end
Assertion script $pdgesv_mat A conpil ed.
dbg all> start $pdgesv_mat A
***Starting execution of application
*** Difference found between (doubl e[520][520])*A. A and \
(doubl e[520][520]) *A. Al *** |n Assertl|D:3
*** Difference found between (doubl e[520][480])*A. A and
(doubl e[520]1[480])*A. Al *** |n AssertID: 7

It isfound that matrix Aisdeviating at line 112. Thisis an important result as it
deviates before the X matrix and indicates that the N+1 matrix is deviating inside the
call to HPL_pdgesvK2.

2.7 Comparative Debugging — 6th Pass

The call to HPL_pdgesvK2 is causing deviation to A. A only, and not to the inputs
GRI D, ALGO, or A. Assertions must be created at different points in the code to check
A. A At this point, thisis a "guess and check" process. Assertions can be added or
removed, as needed, to refine the search.

28 S-0042-20

Comparative Debugging Demonstration [2]

Initially the value of A. Ais checked before and after panel initialization (lines 121
and 134); before and after lookahead initialization (lines 140 and 164); before and
after the main loop (lines 164 and 202); and before and after cleanup (lines 202 and
210). The assertion script can be built to compare both rank 0 and rank 1, but for
brevity, in this example focus is on rank O.

dbg all > Restart and Rel aunch

dbg all > build $pdgesvk2

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 121 =
$wor ki ng{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 121

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 134 =
$wor ki ng{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 134

> assert $broken{0}:: (doubl e[520][480]) *A. A@ HPL_pdgesvK2.c": 140 =
$wor ki ng{ 0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 140

> assert $broken{0}:: (doubl e[520][480]) *A. A@ HPL_pdgesvK2.c": 164 =
$wor ki ng{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 164

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 202 =
$wor ki ng{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 202

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 210 =
$wor ki ng{0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 210

> end

***Starting execution of application

*** Difference found between (doubl e[520][480])*A. A and

(doubl e[520][480]) *A. Al *** |n AssertlD:5

A deviation of A. A is detected at line 202, which means the deviation occurs
somewhere inside the main loop. Next an assertion script is built that looks explicitly
at the main loop, picking lines 174, 183, 185, 192, and 198 for comparison locations.

dbg all > Restart and Rel aunch

dbg al |l > build $pdgesvK2_mai n_| oop

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 174 =
$wor ki ng{0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 174

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 183 =
$wor ki ng{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 183

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 185 =
$wor ki ng{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 185

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 192 =
$wor ki ng{0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 192

> assert $broken{0}:: (doubl e[520] [480]) *A. A@ pdgesvK2.c": 198 =
$wor ki ng{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 198

> end

Assertion script $pdgesvK2_nmi n_| oop conpil ed.

dbg all> start $pdgesvK2_nmi n_| oop

***Starting execution of application

*** Difference found between (doubl e[520][480])*A. A and

(doubl e[520][480]) *A. Al *** |n Assertl|D:3

S-0042-20 29

Using the Igdb Comparative Debugging Feature

dbg al |l >
> assert

> assert
> assert
> assert
> assert

> end

A deviation of A. A isdetected at line 185. This means the deviation occurs between

lines 174 and 185.

bui | d $pdgesvK2_nai n_| oop2

$br oken{0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 176 =
$wor ki ng{ 1} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 176

$br oken{ 0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 177 =
$wor ki ng{ 1} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 177

$br oken{ 0} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 178 =
$wor ki ng{1}:: (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 178

$br oken{0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 179 =
$wor ki ng{ 1} : : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 179

$br oken{0}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2.c": 183 =
$wor ki ng{1}: : (doubl e[520] [480]) *A. A@ HPL_pdgesvK2. c": 183

Assertion script $pdgesvK2_mai n_| oop2 conpil ed.

dbg all> start $pdgesvK2_mmi n_| oop2

***Starting execution of application

*** Difference found between (doubl e[520][480])*A. A and
(doubl e[520][480]) *A. Al *** | n AssertID: 4

30

A deviation of A. A is detected at line 179, which means the deviation occurs
inside HPL_pdupdat e. Note that thisis afunction pointer that gets set inside
HPL_pdgesvK2. Itsvalue can be determined by printing HPL _pdupdat e.

dbg all > print HPL_pdupdate

broken[0, 2..3]: No symbol "HPL_pdupdate" in current context
broken[1]: {void (*)()} 0x431c60 <HPL_pdupdateTT>
wor ki ng[0, 2..3]: No synbol "HPL_pdupdate" in current context
working[1]: {void (*)()} 0x431c60 <HPL_pdupdateTT>

This showsthat HPL_pdupdat e pointsto the function HPL_pdupdat eTT.

S-0042-20

Comparative Debugging Demonstration [2]

2.8 Comparative Debugging — 7th Pass

HPL_updat e passesaHPL_T_panel pointer, which contains our A matrix, to
HPL_updat eTT. Thistypeisdefinedin hpl _panel . h. The member pnmat
containsthe local array information where the A matrix that is deviating is found. To
check the A matrix, use the variable PANEL - >pmat - >A. The control flow gets very
complicated inside this function due to the use of numerous compiler directives. An
assertion can be placed inside the main blocks to determine what is called and what
is not.

dbg all > Restart and Rel aunch

dbg al | > build $pdupdat eTT

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 119 =
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c": 119

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 143 =
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c": 143

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 145 =
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c": 145

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 264 =
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c": 264

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 431 =
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c": 431

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 436 =
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c": 436

> end

Assertion script $pdupdateTT conpil ed.

dbg all> start $pdupdateTT

***Starting execution of application

*** Difference found between (doubl e[520][480]) * PANEL- >pmat - >A and

(doubl e[520] [480]) * PANEL- >pmat - >Al *** |n AssertID:5
*** The interpreter has halted. ***

Assertion sunmary:

AssertID 1: Pass: 1 Warn: 0 Fail: O
AssertID 2: Pass: 1 Warn: 0 Fail: O
AssertI D 3: Pass: 0 Warn: O Fail: O
AssertID 4: Pass: 1 Warn: 0 Fail: O
AssertI D 5: Pass: 0 Warn: 0 Fail: 1
Assert|I D 6: Pass: 0 Warn: O Fail: O

S-0042-20 31

Using the Igdb Comparative Debugging Feature

dbg al |l >

>

>

>

>

assert

assert

assert

assert

assert

assert

assert

assert

end

Assertions on lines 119, 143, and 264 pass, but the assertion on line 431 failed. This

narrows the scope to between lines 264 and 431.

bui | d $el se_bl ock
$br oken{1}: : (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.
$broken{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.
$br oken{1}: : (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}: : (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.
$br oken{1}: : (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.
$broken{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.
$br oken{1}: : (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}: : (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.
$br oken{1}: : (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.
$broken{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c":
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT.

Assertion script $el se_bl ock conpil ed.

dbg all> start $el se_bl ock

***Starting execution of application

*** Difference found between (doubl e[520][480]) * PANEL- >pmat - >A and

(doubl e[520] [480]) * PANEL- >pmat - >Al *** | n AssertID:5

*** The interpreter has halted. ***

Assertion sunmary:

AssertI D 1: Pass:
Assert| D 2: Pass:
Assert| D 3: Pass:
Assert| D 4: Pass:
Assert| D 5: Pass:
Assert| D 6: Pass:
Assert| D 7: Pass:
Assert| D 8: Pass:

32

1 Warn: 0 Fail: O
0 Warn: 0 Fail: O
0 Wwarn: O Fail: O
1 Warn: 0 Fail: O
0 Warn: 0 Fail: 1
0 Wwarn: O Fail: O
0 Warn: 0 Fail: O
0 Warn: 0 Fail: O

300 =
c":300
328 =
c":328
352 =
c":352
360 =
c":360
386 =
c": 386
410 =
c":410
431 =
c":431
436 =
c":436

S-0042-20

Comparative Debugging Demonstration

2]

Assertions on lines 300 and 360 pass; however, the assertion on line 386 fails. At
this point the value of the directive HPL__CALL_VSI PL is not known. gdb will
automatically assign invalid line numbers to the next valid line in the source code;
therefore, it is necessary to first check higher line numbers to ensure gdb does not
assign a lower number to a higher number without notification.

367 #i f def HPL_CALL_VSI PL

368 /*

369 * Create the matrix subvi ews

370 */

371 W1l = vsip_nsubvi ew d(WO, nqgoO, 0, nn, jb);
372 Avl = vsip_nsubvi ew d(Av0, PANEL->ii+jb, PANEL->jj+nq0, np, nn);
373

374 vsi p_genp_d(-HPL_rone, Lvl, VSIP_MAT_NTRANS, W1, VSIP_MAT_TRANS,
375 HPL_rone, Avl);

376 | *

377 * Destroy the matrix subvi ews

378 */

379 (void) vsip_ndestroy_d(Avl);

380 (void) vsip_ndestroy d(W1l);

381 #el se

382 HPL_dgem{ Hpl Col uimMaj or, Hpl NoTrans, Hpl Trans, np, nn,

383 jb, -HPL_rone, L2ptr, 1dl 2, Uptr, LDU, HPL_rone,

384 Mptr(Aptr, jb, 0, Ida), lda);

385 #endi f

386 HPL_dl atcpy(jb, nn, Uptr, LDU, Aptr, lda);

Start out by checking line 382 followed by the known failure at line 386.

dbg all> build $inner_if_block

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 382 =
$wor ki ng{1}:: (doubl e[520] [480]) * PANEL- >pmat - >A@ HPL_pdupdat eTT. c": 382

> assert $broken{1}:: (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 386 =
$wor ki ng{1}: : (doubl e[520] [480]) * PANEL- >pnat - >A@ HPL_pdupdat eTT. c": 386

> end

Assertion script $inner_if_block conpiled.

dbg all> start $inner_if_bl ock

***Starting execution of application

*** Difference found between (doubl e[520][480]) * PANEL- >pmat - >A and
(doubl e[520] [480]) * PANEL- >pmat - >Al *** | n Assertl|D: 2

*** The interpreter has halted. ***

Assertion sumary:
AssertID 1: Pass: 1 Warn: O Fail: O
AssertID 2: Pass: 0 Warn: 0 Fail: 1

The assertion on line 382 was hit and passed, but the assertion on line 386 fails. This

indicates that HPL _CALL_ VSI PL was not defined and the function HPL_dgenm
was called. It isalso known that the A matrix began deviating on the return from
this call.

S-0042-20

33

Using the Igdb Comparative Debugging Feature

2.9 Comparative Debugging — 8th Pass

dbg all >
dbg al |l >
> assert
assert
assert
assert
assert
assert
assert
assert
assert
assert
assert
end

VVVVVVVYVYVYV

>

Now compare all scalar inputs to the HPL_dgenmfunction call.

Restart and Rel aunch
bui I d $dgenm

$br oken{1}::
$br oken{1}::
$br oken{1}::
$br oken{1}::
$br oken{1}::
$br oken{1}::
$br oken{1}::
$br oken{1}::
$br oken{1}::
$broken{1}::
$br oken{1}::

ORDER@ HPL_dgenm c": 467 = $wor ki ng{ 1} : : ORDER@ HPL_dgenmm c": 467
TRANSA@ HPL_dgermm c": 467 $wor ki ng{ 1} : : TRANSA@ HPL_dgenm c": 467
TRANSB@ HPL_dgermm c": 467 $wor ki ng{1}: : TRANSB@ HPL_dgenm c": 467
M@ HPL_dgemm c": 467 $wor ki ng{1}: : M@ HPL_dgenm c": 467

N@ HPL_dgenmm c": 467 $wor ki ng{1}: : N@ HPL_dgemm c": 467

K@ HPL_dgenmm c": 467 $wor ki ng{1}:: K@ HPL_dgemm c": 467

ALPHA@ HPL_dgemm c": 467 = $wor ki ng{1}: : ALPHA@ HPL_dgenm c": 467
LDA@ HPL_dgemm c": 467 = $wor ki ng{1}: : LDA@ HPL_dgenm c": 467

LDB@ HPL_dgenm c": 467 $wor ki ng{1}: : LDB@ HPL_dgenm c": 467
BETA@ HPL_dgemm c": 467 = $wor ki ng{1}: : BETA@ HPL_dgenm c": 467
LDC@ HPL_dgenm c": 467 $wor ki ng{1}: : LDC@ HPL_dgenm c": 467

Assertion script $dgemm conpil ed.
dbg all > start $dgemm
***Starting execution of application

* k%

* k%

*** The interpreter
Assertion script $dgemm conpl ete.

Successf ul

Tot al
Tot al
Tot al

Assertion sunmary:

Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D
Assert| D

34

1: Pass:
2 Pass:
3 Pass:
4 Pass:
5: Pass:
6: Pass:
7 Pass:
8 Pass:
9: Pass:

10 Pass:
11 Pass:

Di fference found between ALPHA and ALPHA!
Di fference found between BETA and BETA!
has hal t ed.

Assertion Set
Passed Assertions:
War ned Assertions: O
Fail ed Assertions: 2

NNENNMNNNNDN

* k%

In AssertlID:.7
In Assert|D: 10

* k k

* %k

Iterations: 1
20

Warn: O Fail: O
Warn: O Fail: O
Warn: O Fail: O
Warn: O Fail: O
Warn: 0 Fail: O
Warn: O Fail: O
Warn: O Fail: 1
Warn: 0 Fail: O
Warn: O Fail: O
1 Warn: O Fail: 1
2 Warn: 0 Fail: O

S-0042-20

Comparative Debugging Demonstration [2]

dbg al

> bt

br oken[0, 2- 3] :
br oken[1] :
br oken[1] :
br oken[1] :
br oken[1] :
br oken[1] :
br oken[1] :
br oken[1] :

wor Ki
wor Ki
wor Ki
wor Ki
wor Ki
wor Ki
wor Ki
wor Ki

ng[0, 2-
ng[1] :
ng[1] :
ng[1] :
ng[1] :
ng[1] :
ng[1] :
ng[1] :

S-0042-20

0
1
2
3
4
5
6
3

]:
0
1
2
3
4
5
6

Note that there was one successful assertion set iteration, which means that function
HPL_dgenmwas called, without failure at some point in the control flow, before

it was called at line 382 of HPL_pdupdat eTT. c. A difference between ALPHA
and BETA that correspond to assertIDs 7 and 10, respectively. When this took place
can be determined by issuing the backt r ace (or bt) command after the script
interpreter halts.

**%* programis runni ng

0x000000000042a488 in HPL_dgenm at ..src/blas/HPL_dgenm c: 467
0x0000000000432561 in HPL_pdupdat eTT at ..src/pgesv/HPL_pdupdat eTT. c: 382
0x000000000044f69e in HPL_pdgesvK2 at ..src/pgesv/HPL_pdgesvK2.c: 178
0x0000000000432706 in HPL_pdgesv at ..src/pgesv/HPL_pdgesv. c: 107
0x000000000040f bce in HPL_pdtest at ..src/ptest/HPL_pdtest.c: 200
0x000000000040alad in HPL_nmain at ..src/ptest/HPL_pddriver.c: 228
0x0000000000402434 in main at ..src/hpcc.c: 309

*** programis running

0x000000000042a488 in HPL_dgenm at ..src/blas/HPL_dgenm c: 467
0x0000000000432561 in HPL_pdupdat eTT at ..src/pgesv/HPL_pdupdateTT. c: 382
0x000000000044f 69e in HPL_pdgesvK2 at ..src/pgesv/HPL_pdgesvK2.c: 178
0x0000000000432706 in HPL_pdgesv at ..src/pgesv/HPL_pdgesv. c: 107
0x000000000040f bce in HPL_pdtest at ..src/ptest/HPL_pdtest.c: 200
0x000000000040alad in HPL_main at ..src/ptest/HPL_pddriver.c: 228
0x0000000000402434 in main at ..src/hpcc.c: 309

This verifies that the call to HPL_dgenmwas made at line 382 of
HPL_pdupdat eTT. c, as expected. The values of ALPHA and BETA can be printed
to see what they are currently set to in both processes.

dbg all > print ALPHA

broken[0,2..3]: No synbol "ALPHA" in current context
broken[1]: 1

wor ki ng[0, 2..3]: No symbol "ALPHA" in current context
working[1]: -1

dbg all > print BETA

broken[0, 2..3]: No symbol "BETA" in current context
broken[1]: -1

wor ki ng[0,2..3]: No synbol "BETA" in current context
working[1]: 1

Note that there is a sign difference for both. The creator of the broken code
mistakenly reversed the sign for both ALPHA and BETA, which led to adeviation. If
the mistake is corrected, the code recompiled and script hpcc_script _1.rcis
run, the codes no longer deviate; the problem has been resolved.

35

Using the Igdb Comparative Debugging Feature

36 S-0042-20

Conclusion [3]

A magjor bottleneck in the development of high-performance applicationsis caused
by the complexity of running applications across tens of thousands of processing
cores. Although progress has been made in debuggers for parallel programs with
improvements in the user interface to present application data, it is still cumbersome
to isolate the source of a program bug. Comparative debugging is a methodology for
debugging applications that undergo evolutionary changes such as enhancements,
optimizations, porting, or running at a larger scale. Comparative debugging enables
programmers to compare key data structures between two executing applications,
making it possible to pinpoint the area within the application where incorrect results
are first produced.

This paper demonstrated Cray's initial support of comparative debugging using | gdb
2.0 to debug an error within alarge and complex application. Although the command
line interface is cumbersome, the basic functionality exists. In the future, Cray
plans to release its comparative debugger with a GUI, simplifying and enhancing

the debugging process.

S-0042-20 37

	Using the lgdb Comparative Debugging Feature
	Abstract
	Introduction [1]
	1.1 The Comparative Debugging Cycle

	Comparative Debugging Demonstration [2]
	2.1 Staging the Demonstration
	2.2 The Comparative Debugging Process � Initial Pass
	2.2.1 Locate Entry Point into Code
	2.2.2 Specify Resource Requirements and Launch Applications
	2.2.3 Define Key Data Structures
	2.2.4 Employ Assertions to Compare Data Structures
	2.2.5 Evaluate Results

	2.3 Comparative Debugging � 2nd Pass
	2.4 Comparative Debugging � 3rd Pass
	2.5 Comparative Debugging � 4th Pass
	2.6 Comparative Debugging � 5th Pass
	2.7 Comparative Debugging � 6th Pass
	2.8 Comparative Debugging � 7th Pass
	2.9 Comparative Debugging � 8th Pass

	Conclusion [3]
	List of Procedures
	Procedure 1. Initial pass of comparative debugging with lgdb

	List of Examples
	Example 1. Compile code with debugging enabled
	Example 2. Launching applications using lgdb
	Example 3. Two-dimensional data decomposition scheme
	Example 4. Use an imperative assertion to compare data structure
	Example 5. Use a declarative assertion to compare data structure

